ZHCAB22A November   2017  – November 2020 TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1

 

  1.   商标
  2. 引言和范围
  3. SRAM 位阵列
  4. SRAM 故障来源
    1. 3.1 制造缺陷
      1. 3.1.1 时间零点故障
      2. 3.1.2 潜在故障
    2. 3.2 电路随使用次数的增加发生漂移
    3. 3.3 电路过应力
    4. 3.4 软错误
      1. 3.4.1 放射性事件
      2. 3.4.2 动态电压事件
      3. 3.4.3 错误来源总结
  5. 用于管理电子系统中存储器故障的方法
    1. 4.1 启动测试
    2. 4.2 系统内测试
    3. 4.3 奇偶检测
    4. 4.4 检错与纠错 (EDAC)
    5. 4.5 冗余
  6. 比较和结论
  7. C2000 存储器类型示例
    1. 6.1 TMS320F2837xD
  8. 存储器类型
    1. 7.1 专用 RAM(Mx 和 Dx RAM)
    2. 7.2 本地共享 RAM (LSx RAM)
    3. 7.3 全局共享 RAM (GSx RAM)
    4. 7.4 CPU 消息 RAM (CPU MSGRAM)
    5. 7.5 CLA 消息 RAM (CLA MSGRAM)
  9. 总结
  10. 参考文献
  11. 10修订历史记录

时间零点故障

由于生产测试中的特殊算法导向和广泛的裕度,在器件集成到系统中之前就涵盖了时间零点缺陷机制。在成熟的半导体工艺中,大多数缺陷 (>98%) 是通过常规 March 算法(例如 March13n)捕获的。在更先进的工艺节点 (<65nm) 中,需要使用更先进的算法才能实现这一点。