SPNU151V January   1998  – February 2020

 

  1.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Related Documentation
    4.     Related Documentation From Texas Instruments
    5.     Trademarks
  2. 1Introduction to the Software Development Tools
    1. 1.1 Software Development Tools Overview
    2. 1.2 Compiler Interface
    3. 1.3 ANSI/ISO Standard
    4. 1.4 Output Files
    5. 1.5 Utilities
  3. 2Using the C/C++ Compiler
    1. 2.1  About the Compiler
    2. 2.2  Invoking the C/C++ Compiler
    3. 2.3  Changing the Compiler's Behavior with Options
      1. 2.3.1  Linker Options
      2. 2.3.2  Frequently Used Options
      3. 2.3.3  Miscellaneous Useful Options
      4. 2.3.4  Run-Time Model Options
      5. 2.3.5  Symbolic Debugging and Profiling Options
      6. 2.3.6  Specifying Filenames
      7. 2.3.7  Changing How the Compiler Interprets Filenames
      8. 2.3.8  Changing How the Compiler Processes C Files
      9. 2.3.9  Changing How the Compiler Interprets and Names Extensions
      10. 2.3.10 Specifying Directories
      11. 2.3.11 Assembler Options
      12. 2.3.12 Deprecated Options
    4. 2.4  Controlling the Compiler Through Environment Variables
      1. 2.4.1 Setting Default Compiler Options (TI_ARM_C_OPTION)
      2. 2.4.2 Naming One or More Alternate Directories (TI_ARM_C_DIR)
    5. 2.5  Controlling the Preprocessor
      1. 2.5.1  Predefined Macro Names
      2. 2.5.2  The Search Path for #include Files
        1. 2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)
      3. 2.5.3  Support for the #warning and #warn Directives
      4. 2.5.4  Generating a Preprocessed Listing File (--preproc_only Option)
      5. 2.5.5  Continuing Compilation After Preprocessing (--preproc_with_compile Option)
      6. 2.5.6  Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
      7. 2.5.7  Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
      8. 2.5.8  Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
      9. 2.5.9  Generating a List of Files Included with #include (--preproc_includes Option)
      10. 2.5.10 Generating a List of Macros in a File (--preproc_macros Option)
    6. 2.6  Passing Arguments to main()
    7. 2.7  Understanding Diagnostic Messages
      1. 2.7.1 Controlling Diagnostic Messages
      2. 2.7.2 How You Can Use Diagnostic Suppression Options
    8. 2.8  Other Messages
    9. 2.9  Generating Cross-Reference Listing Information (--gen_cross_reference Option)
    10. 2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
    11. 2.11 Using Inline Function Expansion
      1. 2.11.1 Inlining Intrinsic Operators
      2. 2.11.2 Inlining Restrictions
    12. 2.12 Using Interlist
      1.      Example 1. An Interlisted Assembly Language File
    13. 2.13 Controlling Application Binary Interface
    14. 2.14 VFP Support
    15. 2.15 Enabling Entry Hook and Exit Hook Functions
  4. 3Optimizing Your Code
    1. 3.1  Invoking Optimization
    2. 3.2  Controlling Code Size Versus Speed
    3. 3.3  Performing File-Level Optimization (--opt_level=3 option)
      1. 3.3.1 Creating an Optimization Information File (--gen_opt_info Option)
    4. 3.4  Program-Level Optimization (--program_level_compile and --opt_level=3 options)
      1. 3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)
      2. 3.4.2 Optimization Considerations When Mixing C/C++ and Assembly
    5. 3.5  Automatic Inline Expansion (--auto_inline Option)
    6. 3.6  Link-Time Optimization (--opt_level=4 Option)
      1. 3.6.1 Option Handling
      2. 3.6.2 Incompatible Types
    7. 3.7  Using Feedback Directed Optimization
      1. 3.7.1 Feedback Directed Optimization
        1. 3.7.1.1 Phase 1 -- Collect Program Profile Information
        2. 3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization
        3. 3.7.1.3 Generating and Using Profile Information
        4. 3.7.1.4 Example Use of Feedback Directed Optimization
        5. 3.7.1.5 The .ppdata Section
        6. 3.7.1.6 Feedback Directed Optimization and Code Size Tune
        7. 3.7.1.7 Instrumented Program Execution Overhead
        8. 3.7.1.8 Invalid Profile Data
      2. 3.7.2 Profile Data Decoder
      3. 3.7.3 Feedback Directed Optimization API
      4. 3.7.4 Feedback Directed Optimization Summary
    8. 3.8  Using Profile Information to Analyze Code Coverage
      1. 3.8.1 Code Coverage
        1. 3.8.1.1 Phase1 -- Collect Program Profile Information
        2. 3.8.1.2 Phase 2 -- Generate Code Coverage Reports
      2. 3.8.2 Related Features and Capabilities
        1. 3.8.2.1 Path Profiler
        2. 3.8.2.2 Analysis Options
        3. 3.8.2.3 Environment Variables
    9. 3.9  Accessing Aliased Variables in Optimized Code
    10. 3.10 Use Caution With asm Statements in Optimized Code
    11. 3.11 Using the Interlist Feature With Optimization
      1.      Example 1. The Function From Compiled With the -O2 and --optimizer_interlist Options
      2.      Example 2. The Function From Compiled with the --opt_level=2, --optimizer_interlist, and --c_src_interlist Options
    12. 3.12 Debugging and Profiling Optimized Code
      1. 3.12.1 Profiling Optimized Code
    13. 3.13 What Kind of Optimization Is Being Performed?
      1. 3.13.1  Cost-Based Register Allocation
      2. 3.13.2  Alias Disambiguation
      3. 3.13.3  Branch Optimizations and Control-Flow Simplification
      4. 3.13.4  Data Flow Optimizations
      5. 3.13.5  Expression Simplification
      6. 3.13.6  Inline Expansion of Functions
      7. 3.13.7  Function Symbol Aliasing
      8. 3.13.8  Induction Variables and Strength Reduction
      9. 3.13.9  Loop-Invariant Code Motion
      10. 3.13.10 Loop Rotation
      11. 3.13.11 Instruction Scheduling
      12. 3.13.12 Tail Merging
      13. 3.13.13 Autoincrement Addressing
      14. 3.13.14 Block Conditionalizing
        1.       Example 3. Block Conditionalizing C Source
        2.       Example 4. C/C++ Compiler Output for
      15. 3.13.15 Epilog Inlining
      16. 3.13.16 Removing Comparisons to Zero
      17. 3.13.17 Integer Division With Constant Divisor
      18. 3.13.18 Branch Chaining
  5. 4Linking C/C++ Code
    1. 4.1 Invoking the Linker Through the Compiler (-z Option)
      1. 4.1.1 Invoking the Linker Separately
      2. 4.1.2 Invoking the Linker as Part of the Compile Step
      3. 4.1.3 Disabling the Linker (--compile_only Compiler Option)
    2. 4.2 Linker Code Optimizations
      1. 4.2.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)
      2. 4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)
    3. 4.3 Controlling the Linking Process
      1. 4.3.1 Including the Run-Time-Support Library
        1. 4.3.1.1 Automatic Run-Time-Support Library Selection
          1.        Example 1. Using the --issue_remarks Option
        2. 4.3.1.2 Manual Run-Time-Support Library Selection
        3. 4.3.1.3 Library Order for Searching for Symbols
      2. 4.3.2 Run-Time Initialization
      3. 4.3.3 Initialization of Cinit and Watchdog Timer Hold
      4. 4.3.4 Global Object Constructors
      5. 4.3.5 Specifying the Type of Global Variable Initialization
      6. 4.3.6 Specifying Where to Allocate Sections in Memory
      7. 4.3.7 A Sample Linker Command File
        1.       Example 2. Linker Command File
  6. 5C/C++ Language Implementation
    1. 5.1  Characteristics of ARM C
      1. 5.1.1 Implementation-Defined Behavior
    2. 5.2  Characteristics of ARM C++
    3. 5.3  Using MISRA C 2004
    4. 5.4  Using the ULP Advisor
    5. 5.5  Data Types
      1. 5.5.1 Size of Enum Types
    6. 5.6  File Encodings and Character Sets
    7. 5.7  Keywords
      1. 5.7.1 The const Keyword
      2. 5.7.2 The __interrupt Keyword
      3. 5.7.3 The volatile Keyword
        1.       Example 1. Volatile for Local Variables With setjmp
    8. 5.8  C++ Exception Handling
    9. 5.9  Register Variables and Parameters
      1. 5.9.1 Local Register Variables and Parameters
      2. 5.9.2 Global Register Variables
    10. 5.10 The __asm Statement
    11. 5.11 Pragma Directives
      1. 5.11.1  The CALLS Pragma
      2. 5.11.2  The CHECK_MISRA Pragma
      3. 5.11.3  The CHECK_ULP Pragma
      4. 5.11.4  The CODE_ALIGN Pragma
      5. 5.11.5  The CODE_SECTION Pragma
        1.       Example 2. Using the CODE_SECTION Pragma C Source File
        2.       Example 3. Generated Assembly Code From
      6. 5.11.6  The CODE_STATE Pragma
      7. 5.11.7  The DATA_ALIGN Pragma
      8. 5.11.8  The DATA_SECTION Pragma
        1.       Example 4. Using the DATA_SECTION Pragma C Source File
        2.       Example 5. Using the DATA_SECTION Pragma C++ Source File
        3.       Example 6. Using the DATA_SECTION Pragma Assembly Source File
      9. 5.11.9  The Diagnostic Message Pragmas
      10. 5.11.10 The DUAL_STATE Pragma
      11. 5.11.11 The FORCEINLINE Pragma
      12. 5.11.12 The FORCEINLINE_RECURSIVE Pragma
      13. 5.11.13 The FUNC_ALWAYS_INLINE Pragma
      14. 5.11.14 The FUNC_CANNOT_INLINE Pragma
      15. 5.11.15 The FUNC_EXT_CALLED Pragma
      16. 5.11.16 The FUNCTION_OPTIONS Pragma
      17. 5.11.17 The INTERRUPT Pragma
      18. 5.11.18 The LOCATION Pragma
      19. 5.11.19 The MUST_ITERATE Pragma
        1. 5.11.19.1 The MUST_ITERATE Pragma Syntax
        2. 5.11.19.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops
      20. 5.11.20 The NOINIT and PERSISTENT Pragmas
      21. 5.11.21 The NOINLINE Pragma
      22. 5.11.22 The NO_HOOKS Pragma
      23. 5.11.23 The once Pragma
      24. 5.11.24 The pack Pragma
      25. 5.11.25 The RESET_MISRA Pragma
      26. 5.11.26 The RESET_ULP Pragma
      27. 5.11.27 The RETAIN Pragma
      28. 5.11.28 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
        1.       Example 7. Setting Section With SET_DATA_SECTION Pragma
        2.       Example 8. Setting a Section With SET_CODE_SECTION Pragma
        3.       Example 9. Overriding SET_DATA_SECTION Setting
      29. 5.11.29 The SWI_ALIAS Pragma
        1.       Example 10. Using the SWI_ALIAS Pragma C Source File
        2.       Example 11. Generated Assembly File
      30. 5.11.30 The TASK Pragma
      31. 5.11.31 The UNROLL Pragma
      32. 5.11.32 The WEAK Pragma
    12. 5.12 The _Pragma Operator
    13. 5.13 Application Binary Interface
    14. 5.14 ARM Instruction Intrinsics
    15. 5.15 Object File Symbol Naming Conventions (Linknames)
    16. 5.16 Changing the ANSI/ISO C/C++ Language Mode
      1. 5.16.1 C99 Support (--c99)
      2. 5.16.2 C11 Support (--c11)
      3. 5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)
    17. 5.17 GNU, Clang, and ACLE Language Extensions
      1. 5.17.1 Extensions
      2. 5.17.2 Function Attributes
      3. 5.17.3 Variable Attributes
      4. 5.17.4 Type Attributes
      5. 5.17.5 Built-In Functions
    18. 5.18 AUTOSAR
    19. 5.19 Compiler Limits
  7. 6Run-Time Environment
    1. 6.1  Memory Model
      1. 6.1.1 Sections
      2. 6.1.2 C/C++ System Stack
      3. 6.1.3 Dynamic Memory Allocation
    2. 6.2  Object Representation
      1. 6.2.1 Data Type Storage
        1. 6.2.1.1 char and short Data Types (signed and unsigned)
        2. 6.2.1.2 float, int, and long Data Types (signed and unsigned)
        3. 6.2.1.3 double, long double, and long long Data Types (signed and unsigned)
        4. 6.2.1.4 Pointer to Data Member Types
        5. 6.2.1.5 Pointer to Member Function Types
        6. 6.2.1.6 Structure and Array Alignment
      2. 6.2.2 Bit Fields
      3. 6.2.3 Character String Constants
    3. 6.3  Register Conventions
    4. 6.4  Function Structure and Calling Conventions
      1. 6.4.1 How a Function Makes a Call
      2. 6.4.2 How a Called Function Responds
      3. 6.4.3 C Exception Handler Calling Convention
      4. 6.4.4 Accessing Arguments and Local Variables
    5. 6.5  Accessing Linker Symbols in C and C++
    6. 6.6  Interfacing C and C++ With Assembly Language
      1. 6.6.1 Using Assembly Language Modules With C/C++ Code
      2. 6.6.2 Accessing Assembly Language Functions From C/C++
        1.       Example 1. Calling an Assembly Language Function From a C/C++ Program
        2.       Example 2. Assembly Language Program Called by
      3. 6.6.3 Accessing Assembly Language Variables From C/C++
        1. 6.6.3.1 Accessing Assembly Language Global Variables
          1.        Example 3. Assembly Language Variable Program
          2.        Example 4. C Program to Access Assembly Language From
        2. 6.6.3.2 Accessing Assembly Language Constants
          1.        Example 5. Accessing an Assembly Language Constant From C
          2.        Example 6. Assembly Language Program for
      4. 6.6.4 Sharing C/C++ Header Files With Assembly Source
      5. 6.6.5 Using Inline Assembly Language
      6. 6.6.6 Modifying Compiler Output
    7. 6.7  Interrupt Handling
      1. 6.7.1 Saving Registers During Interrupts
      2. 6.7.2 Using C/C++ Interrupt Routines
      3. 6.7.3 Using Assembly Language Interrupt Routines
      4. 6.7.4 How to Map Interrupt Routines to Interrupt Vectors
        1.       Example 7. Sample intvecs.asm File
      5. 6.7.5 Using Software Interrupts
      6. 6.7.6 Other Interrupt Information
    8. 6.8  Intrinsic Run-Time-Support Arithmetic and Conversion Routines
      1. 6.8.1 CPSR Register and Interrupt Intrinsics
    9. 6.9  Built-In Functions
    10. 6.10 System Initialization
      1. 6.10.1 Boot Hook Functions for System Pre-Initialization
      2. 6.10.2 Run-Time Stack
      3. 6.10.3 Automatic Initialization of Variables
        1. 6.10.3.1 Zero Initializing Variables
        2. 6.10.3.2 Direct Initialization
        3. 6.10.3.3 Autoinitialization of Variables at Run Time
        4. 6.10.3.4 Autoinitialization Tables
          1. 6.10.3.4.1 Length Followed by Data Format
          2. 6.10.3.4.2 Zero Initialization Format
          3. 6.10.3.4.3 Run Length Encoded (RLE) Format
          4. 6.10.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format
          5. 6.10.3.4.5 Sample C Code to Process the C Autoinitialization Table
            1.         Example 8. Processing the C Autoinitialization Table
        5. 6.10.3.5 Initialization of Variables at Load Time
        6. 6.10.3.6 Global Constructors
      4. 6.10.4 Initialization Tables
        1.       Example 9. Initialized Variables Defined in C
        2.       Example 10. Initialized Information for Variables Defined in
    11. 6.11 Dual-State Interworking Under TIABI (Deprecated)
      1. 6.11.1 Level of Dual-State Support
      2. 6.11.2 Implementation
        1. 6.11.2.1 Naming Conventions for Entry Points
        2. 6.11.2.2 Indirect Calls
          1.        Example 11. C Code Compiled for 16-BIS State: sum( )
          2.        Example 12. 16-Bit Assembly Program for
          3.        Example 13. C Code Compiled for 32-BIS State: sum( )
          4.        Example 14. 32-Bit Assembly Program for
  8. 7Using Run-Time-Support Functions and Building Libraries
    1. 7.1 C and C++ Run-Time Support Libraries
      1. 7.1.1 Linking Code With the Object Library
      2. 7.1.2 Header Files
      3. 7.1.3 Modifying a Library Function
      4. 7.1.4 Support for String Handling
      5. 7.1.5 Minimal Support for Internationalization
      6. 7.1.6 Allowable Number of Open Files
      7. 7.1.7 Nonstandard Header Files in the Source Tree
      8. 7.1.8 Library Naming Conventions
    2. 7.2 The C I/O Functions
      1. 7.2.1 High-Level I/O Functions
        1. 7.2.1.1 Formatting and the Format Conversion Buffer
      2. 7.2.2 Overview of Low-Level I/O Implementation
      3. 7.2.3 Device-Driver Level I/O Functions
      4. 7.2.4 Adding a User-Defined Device Driver for C I/O
        1.       Example 1. Mapping Default Streams to Device
      5. 7.2.5 The device Prefix
        1.       Example 2. Program for C I/O Device
    3. 7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
    4. 7.4 Library-Build Process
      1. 7.4.1 Required Non-Texas Instruments Software
      2. 7.4.2 Using the Library-Build Process
        1. 7.4.2.1 Automatic Standard Library Rebuilding by the Linker
        2. 7.4.2.2 Invoking mklib Manually
          1. 7.4.2.2.1 Building Standard Libraries
          2. 7.4.2.2.2 Shared or Read-Only Library Directory
          3. 7.4.2.2.3 Building Libraries With Custom Options
          4. 7.4.2.2.4 The mklib Program Option Summary
      3. 7.4.3 Extending mklib
        1. 7.4.3.1 Underlying Mechanism
        2. 7.4.3.2 Libraries From Other Vendors
  9. 8C++ Name Demangler
    1. 8.1 Invoking the C++ Name Demangler
    2. 8.2 Sample Usage of the C++ Name Demangler
      1.      Example 1. C++ Code for calories_in_a_banana
      2.      Example 2. Resulting Assembly for calories_in_a_banana
      3.      Example 3. Result After Running the C++ Name Demangler
  10.   A Glossary
    1.     A.1 Terminology
  11.   B Revision History
    1.     B.1 Recent Revisions

Overview of Low-Level I/O Implementation

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, lseek, rename, and unlink. These low-level routines provide the interface between the high-level functions and the device-level drivers that actually perform the I/O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are not actually disk files. Abstractly, all I/O channels can be treated as files, although some operations (such as lseek) may not be appropriate. See Section 7.2.3 for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open, representing an opened file. Multiple file descriptors may be associated with a file; each has its own independent file position indicator.

open
Open File for I/O
Syntax

#include <file.h>

int open (const char *path, unsigned flags, int file_descriptor);

Description

The open function opens the file specified by path and prepares it for I/O.

  • The path is the filename of the file to be opened, including an optional directory path and an optional device specifier (see Section 7.2.5).
  • The flags are attributes that specify how the file is manipulated. The flags are specified using the following symbols:
  • O_RDONLY (0x0000) /* open for reading */ O_WRONLY (0x0001) /* open for writing */ O_RDWR (0x0002) /* open for read & write */ O_APPEND (0x0008) /* append on each write */ O_CREAT (0x0200) /* open with file create */ O_TRUNC (0x0400) /* open with truncation */ O_BINARY (0x8000) /* open in binary mode */

    Low-level I/O routines allow or disallow some operations depending on the flags used when the file was opened. Some flags may not be meaningful for some devices, depending on how the device implements files.

  • The file_descriptor is assigned by open to an opened file.
  • The next available file descriptor is assigned to each new file opened.

Return Value

The function returns one of the following values:

non-negative file descriptor if successful
-1 on failure
close
Close File for I/O
Syntax

#include <file.h>

int close (int file_descriptor);

Description

The close function closes the file associated with file_descriptor.

The file_descriptor is the number assigned by open to an opened file.

Return Value

The return value is one of the following:

0 if successful
-1 on failure
read
Read Characters from a File
Syntax

#include <file.h>

int read (intfile_descriptor, char *buffer, unsignedcount);

Description

The read function reads count characters into the buffer from the file associated with file_descriptor.

  • The file_descriptor is the number assigned by open to an opened file.
  • The buffer is where the read characters are placed.
  • The count is the number of characters to read from the file.
Return Value

The function returns one of the following values:

0 if EOF was encountered before any characters were read
# number of characters read (may be less than count)
-1 on failure
write
Write Characters to a File
Syntax

#include <file.h>

int write (intfile_descriptor, const char *buffer, unsignedcount);

Description

The write function writes the number of characters specified by count from the buffer to the file associated with file_descriptor.

  • The file_descriptor is the number assigned by open to an opened file.
  • The buffer is where the characters to be written are located.
  • The count is the number of characters to write to the file.
Return Value

The function returns one of the following values:

# number of characters written if successful (may be less than count)
-1 on failure
lseek
Set File Position Indicator
Syntax for C

#include <file.h>

off_t lseek (intfile_descriptor, off_toffset, intorigin);

Description

The lseek function sets the file position indicator for the given file to a location relative to the specified origin. The file position indicator measures the position in characters from the beginning of the file.

  • The file_descriptor is the number assigned by open to an opened file.
  • The offset indicates the relative offset from the origin in characters.
  • The origin is used to indicate which of the base locations the offset is measured from. The origin must be one of the following macros:
  • SEEK_SET (0x0000) Beginning of file

    SEEK_CUR (0x0001) Current value of the file position indicator

    SEEK_END (0x0002) End of file

Return Value

The return value is one of the following:

# new value of the file position indicator if successful
(off_t)-1 on failure
Delete File
Syntax

#include <file.h>

int unlink (const char *path);

Description

The unlink function deletes the file specified by path. Depending on the device, a deleted file may still remain until all file descriptors which have been opened for that file have been closed. See Section 7.2.3.

The path is the filename of the file, including path information and optional device prefix. (See Section 7.2.5.)

Return Value

The function returns one of the following values:

0 if successful
-1 on failure
rename
Rename File
Syntax for C

#include {<stdio.h> | <file.h>}

int rename (const char *old_name, const char *new_name);

Syntax for C++

#include {<cstdio> | <file.h>}

int std::rename (const char *old_name, const char *new_name);

Description

The rename function changes the name of a file.

  • The old_name is the current name of the file.
  • The new_name is the new name for the file.
  • NOTE

    The optional device specified in the new name must match the device of the old name. If they do not match, a file copy would be required to perform the rename, and rename is not capable of this action.

Return Value

The function returns one of the following values:

0 if successful
-1 on failure

NOTE

Although rename is a low-level function, it is defined by the C standard and can be used by portable applications.