SPNU151V January   1998  – February 2020

 

  1.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Related Documentation
    4.     Related Documentation From Texas Instruments
    5.     Trademarks
  2. 1Introduction to the Software Development Tools
    1. 1.1 Software Development Tools Overview
    2. 1.2 Compiler Interface
    3. 1.3 ANSI/ISO Standard
    4. 1.4 Output Files
    5. 1.5 Utilities
  3. 2Using the C/C++ Compiler
    1. 2.1  About the Compiler
    2. 2.2  Invoking the C/C++ Compiler
    3. 2.3  Changing the Compiler's Behavior with Options
      1. 2.3.1  Linker Options
      2. 2.3.2  Frequently Used Options
      3. 2.3.3  Miscellaneous Useful Options
      4. 2.3.4  Run-Time Model Options
      5. 2.3.5  Symbolic Debugging and Profiling Options
      6. 2.3.6  Specifying Filenames
      7. 2.3.7  Changing How the Compiler Interprets Filenames
      8. 2.3.8  Changing How the Compiler Processes C Files
      9. 2.3.9  Changing How the Compiler Interprets and Names Extensions
      10. 2.3.10 Specifying Directories
      11. 2.3.11 Assembler Options
      12. 2.3.12 Deprecated Options
    4. 2.4  Controlling the Compiler Through Environment Variables
      1. 2.4.1 Setting Default Compiler Options (TI_ARM_C_OPTION)
      2. 2.4.2 Naming One or More Alternate Directories (TI_ARM_C_DIR)
    5. 2.5  Controlling the Preprocessor
      1. 2.5.1  Predefined Macro Names
      2. 2.5.2  The Search Path for #include Files
        1. 2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)
      3. 2.5.3  Support for the #warning and #warn Directives
      4. 2.5.4  Generating a Preprocessed Listing File (--preproc_only Option)
      5. 2.5.5  Continuing Compilation After Preprocessing (--preproc_with_compile Option)
      6. 2.5.6  Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
      7. 2.5.7  Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
      8. 2.5.8  Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
      9. 2.5.9  Generating a List of Files Included with #include (--preproc_includes Option)
      10. 2.5.10 Generating a List of Macros in a File (--preproc_macros Option)
    6. 2.6  Passing Arguments to main()
    7. 2.7  Understanding Diagnostic Messages
      1. 2.7.1 Controlling Diagnostic Messages
      2. 2.7.2 How You Can Use Diagnostic Suppression Options
    8. 2.8  Other Messages
    9. 2.9  Generating Cross-Reference Listing Information (--gen_cross_reference Option)
    10. 2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
    11. 2.11 Using Inline Function Expansion
      1. 2.11.1 Inlining Intrinsic Operators
      2. 2.11.2 Inlining Restrictions
    12. 2.12 Using Interlist
      1.      Example 1. An Interlisted Assembly Language File
    13. 2.13 Controlling Application Binary Interface
    14. 2.14 VFP Support
    15. 2.15 Enabling Entry Hook and Exit Hook Functions
  4. 3Optimizing Your Code
    1. 3.1  Invoking Optimization
    2. 3.2  Controlling Code Size Versus Speed
    3. 3.3  Performing File-Level Optimization (--opt_level=3 option)
      1. 3.3.1 Creating an Optimization Information File (--gen_opt_info Option)
    4. 3.4  Program-Level Optimization (--program_level_compile and --opt_level=3 options)
      1. 3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)
      2. 3.4.2 Optimization Considerations When Mixing C/C++ and Assembly
    5. 3.5  Automatic Inline Expansion (--auto_inline Option)
    6. 3.6  Link-Time Optimization (--opt_level=4 Option)
      1. 3.6.1 Option Handling
      2. 3.6.2 Incompatible Types
    7. 3.7  Using Feedback Directed Optimization
      1. 3.7.1 Feedback Directed Optimization
        1. 3.7.1.1 Phase 1 -- Collect Program Profile Information
        2. 3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization
        3. 3.7.1.3 Generating and Using Profile Information
        4. 3.7.1.4 Example Use of Feedback Directed Optimization
        5. 3.7.1.5 The .ppdata Section
        6. 3.7.1.6 Feedback Directed Optimization and Code Size Tune
        7. 3.7.1.7 Instrumented Program Execution Overhead
        8. 3.7.1.8 Invalid Profile Data
      2. 3.7.2 Profile Data Decoder
      3. 3.7.3 Feedback Directed Optimization API
      4. 3.7.4 Feedback Directed Optimization Summary
    8. 3.8  Using Profile Information to Analyze Code Coverage
      1. 3.8.1 Code Coverage
        1. 3.8.1.1 Phase1 -- Collect Program Profile Information
        2. 3.8.1.2 Phase 2 -- Generate Code Coverage Reports
      2. 3.8.2 Related Features and Capabilities
        1. 3.8.2.1 Path Profiler
        2. 3.8.2.2 Analysis Options
        3. 3.8.2.3 Environment Variables
    9. 3.9  Accessing Aliased Variables in Optimized Code
    10. 3.10 Use Caution With asm Statements in Optimized Code
    11. 3.11 Using the Interlist Feature With Optimization
      1.      Example 1. The Function From Compiled With the -O2 and --optimizer_interlist Options
      2.      Example 2. The Function From Compiled with the --opt_level=2, --optimizer_interlist, and --c_src_interlist Options
    12. 3.12 Debugging and Profiling Optimized Code
      1. 3.12.1 Profiling Optimized Code
    13. 3.13 What Kind of Optimization Is Being Performed?
      1. 3.13.1  Cost-Based Register Allocation
      2. 3.13.2  Alias Disambiguation
      3. 3.13.3  Branch Optimizations and Control-Flow Simplification
      4. 3.13.4  Data Flow Optimizations
      5. 3.13.5  Expression Simplification
      6. 3.13.6  Inline Expansion of Functions
      7. 3.13.7  Function Symbol Aliasing
      8. 3.13.8  Induction Variables and Strength Reduction
      9. 3.13.9  Loop-Invariant Code Motion
      10. 3.13.10 Loop Rotation
      11. 3.13.11 Instruction Scheduling
      12. 3.13.12 Tail Merging
      13. 3.13.13 Autoincrement Addressing
      14. 3.13.14 Block Conditionalizing
        1.       Example 3. Block Conditionalizing C Source
        2.       Example 4. C/C++ Compiler Output for
      15. 3.13.15 Epilog Inlining
      16. 3.13.16 Removing Comparisons to Zero
      17. 3.13.17 Integer Division With Constant Divisor
      18. 3.13.18 Branch Chaining
  5. 4Linking C/C++ Code
    1. 4.1 Invoking the Linker Through the Compiler (-z Option)
      1. 4.1.1 Invoking the Linker Separately
      2. 4.1.2 Invoking the Linker as Part of the Compile Step
      3. 4.1.3 Disabling the Linker (--compile_only Compiler Option)
    2. 4.2 Linker Code Optimizations
      1. 4.2.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)
      2. 4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)
    3. 4.3 Controlling the Linking Process
      1. 4.3.1 Including the Run-Time-Support Library
        1. 4.3.1.1 Automatic Run-Time-Support Library Selection
          1.        Example 1. Using the --issue_remarks Option
        2. 4.3.1.2 Manual Run-Time-Support Library Selection
        3. 4.3.1.3 Library Order for Searching for Symbols
      2. 4.3.2 Run-Time Initialization
      3. 4.3.3 Initialization of Cinit and Watchdog Timer Hold
      4. 4.3.4 Global Object Constructors
      5. 4.3.5 Specifying the Type of Global Variable Initialization
      6. 4.3.6 Specifying Where to Allocate Sections in Memory
      7. 4.3.7 A Sample Linker Command File
        1.       Example 2. Linker Command File
  6. 5C/C++ Language Implementation
    1. 5.1  Characteristics of ARM C
      1. 5.1.1 Implementation-Defined Behavior
    2. 5.2  Characteristics of ARM C++
    3. 5.3  Using MISRA C 2004
    4. 5.4  Using the ULP Advisor
    5. 5.5  Data Types
      1. 5.5.1 Size of Enum Types
    6. 5.6  File Encodings and Character Sets
    7. 5.7  Keywords
      1. 5.7.1 The const Keyword
      2. 5.7.2 The __interrupt Keyword
      3. 5.7.3 The volatile Keyword
        1.       Example 1. Volatile for Local Variables With setjmp
    8. 5.8  C++ Exception Handling
    9. 5.9  Register Variables and Parameters
      1. 5.9.1 Local Register Variables and Parameters
      2. 5.9.2 Global Register Variables
    10. 5.10 The __asm Statement
    11. 5.11 Pragma Directives
      1. 5.11.1  The CALLS Pragma
      2. 5.11.2  The CHECK_MISRA Pragma
      3. 5.11.3  The CHECK_ULP Pragma
      4. 5.11.4  The CODE_ALIGN Pragma
      5. 5.11.5  The CODE_SECTION Pragma
        1.       Example 2. Using the CODE_SECTION Pragma C Source File
        2.       Example 3. Generated Assembly Code From
      6. 5.11.6  The CODE_STATE Pragma
      7. 5.11.7  The DATA_ALIGN Pragma
      8. 5.11.8  The DATA_SECTION Pragma
        1.       Example 4. Using the DATA_SECTION Pragma C Source File
        2.       Example 5. Using the DATA_SECTION Pragma C++ Source File
        3.       Example 6. Using the DATA_SECTION Pragma Assembly Source File
      9. 5.11.9  The Diagnostic Message Pragmas
      10. 5.11.10 The DUAL_STATE Pragma
      11. 5.11.11 The FORCEINLINE Pragma
      12. 5.11.12 The FORCEINLINE_RECURSIVE Pragma
      13. 5.11.13 The FUNC_ALWAYS_INLINE Pragma
      14. 5.11.14 The FUNC_CANNOT_INLINE Pragma
      15. 5.11.15 The FUNC_EXT_CALLED Pragma
      16. 5.11.16 The FUNCTION_OPTIONS Pragma
      17. 5.11.17 The INTERRUPT Pragma
      18. 5.11.18 The LOCATION Pragma
      19. 5.11.19 The MUST_ITERATE Pragma
        1. 5.11.19.1 The MUST_ITERATE Pragma Syntax
        2. 5.11.19.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops
      20. 5.11.20 The NOINIT and PERSISTENT Pragmas
      21. 5.11.21 The NOINLINE Pragma
      22. 5.11.22 The NO_HOOKS Pragma
      23. 5.11.23 The once Pragma
      24. 5.11.24 The pack Pragma
      25. 5.11.25 The RESET_MISRA Pragma
      26. 5.11.26 The RESET_ULP Pragma
      27. 5.11.27 The RETAIN Pragma
      28. 5.11.28 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
        1.       Example 7. Setting Section With SET_DATA_SECTION Pragma
        2.       Example 8. Setting a Section With SET_CODE_SECTION Pragma
        3.       Example 9. Overriding SET_DATA_SECTION Setting
      29. 5.11.29 The SWI_ALIAS Pragma
        1.       Example 10. Using the SWI_ALIAS Pragma C Source File
        2.       Example 11. Generated Assembly File
      30. 5.11.30 The TASK Pragma
      31. 5.11.31 The UNROLL Pragma
      32. 5.11.32 The WEAK Pragma
    12. 5.12 The _Pragma Operator
    13. 5.13 Application Binary Interface
    14. 5.14 ARM Instruction Intrinsics
    15. 5.15 Object File Symbol Naming Conventions (Linknames)
    16. 5.16 Changing the ANSI/ISO C/C++ Language Mode
      1. 5.16.1 C99 Support (--c99)
      2. 5.16.2 C11 Support (--c11)
      3. 5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)
    17. 5.17 GNU, Clang, and ACLE Language Extensions
      1. 5.17.1 Extensions
      2. 5.17.2 Function Attributes
      3. 5.17.3 Variable Attributes
      4. 5.17.4 Type Attributes
      5. 5.17.5 Built-In Functions
    18. 5.18 AUTOSAR
    19. 5.19 Compiler Limits
  7. 6Run-Time Environment
    1. 6.1  Memory Model
      1. 6.1.1 Sections
      2. 6.1.2 C/C++ System Stack
      3. 6.1.3 Dynamic Memory Allocation
    2. 6.2  Object Representation
      1. 6.2.1 Data Type Storage
        1. 6.2.1.1 char and short Data Types (signed and unsigned)
        2. 6.2.1.2 float, int, and long Data Types (signed and unsigned)
        3. 6.2.1.3 double, long double, and long long Data Types (signed and unsigned)
        4. 6.2.1.4 Pointer to Data Member Types
        5. 6.2.1.5 Pointer to Member Function Types
        6. 6.2.1.6 Structure and Array Alignment
      2. 6.2.2 Bit Fields
      3. 6.2.3 Character String Constants
    3. 6.3  Register Conventions
    4. 6.4  Function Structure and Calling Conventions
      1. 6.4.1 How a Function Makes a Call
      2. 6.4.2 How a Called Function Responds
      3. 6.4.3 C Exception Handler Calling Convention
      4. 6.4.4 Accessing Arguments and Local Variables
    5. 6.5  Accessing Linker Symbols in C and C++
    6. 6.6  Interfacing C and C++ With Assembly Language
      1. 6.6.1 Using Assembly Language Modules With C/C++ Code
      2. 6.6.2 Accessing Assembly Language Functions From C/C++
        1.       Example 1. Calling an Assembly Language Function From a C/C++ Program
        2.       Example 2. Assembly Language Program Called by
      3. 6.6.3 Accessing Assembly Language Variables From C/C++
        1. 6.6.3.1 Accessing Assembly Language Global Variables
          1.        Example 3. Assembly Language Variable Program
          2.        Example 4. C Program to Access Assembly Language From
        2. 6.6.3.2 Accessing Assembly Language Constants
          1.        Example 5. Accessing an Assembly Language Constant From C
          2.        Example 6. Assembly Language Program for
      4. 6.6.4 Sharing C/C++ Header Files With Assembly Source
      5. 6.6.5 Using Inline Assembly Language
      6. 6.6.6 Modifying Compiler Output
    7. 6.7  Interrupt Handling
      1. 6.7.1 Saving Registers During Interrupts
      2. 6.7.2 Using C/C++ Interrupt Routines
      3. 6.7.3 Using Assembly Language Interrupt Routines
      4. 6.7.4 How to Map Interrupt Routines to Interrupt Vectors
        1.       Example 7. Sample intvecs.asm File
      5. 6.7.5 Using Software Interrupts
      6. 6.7.6 Other Interrupt Information
    8. 6.8  Intrinsic Run-Time-Support Arithmetic and Conversion Routines
      1. 6.8.1 CPSR Register and Interrupt Intrinsics
    9. 6.9  Built-In Functions
    10. 6.10 System Initialization
      1. 6.10.1 Boot Hook Functions for System Pre-Initialization
      2. 6.10.2 Run-Time Stack
      3. 6.10.3 Automatic Initialization of Variables
        1. 6.10.3.1 Zero Initializing Variables
        2. 6.10.3.2 Direct Initialization
        3. 6.10.3.3 Autoinitialization of Variables at Run Time
        4. 6.10.3.4 Autoinitialization Tables
          1. 6.10.3.4.1 Length Followed by Data Format
          2. 6.10.3.4.2 Zero Initialization Format
          3. 6.10.3.4.3 Run Length Encoded (RLE) Format
          4. 6.10.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format
          5. 6.10.3.4.5 Sample C Code to Process the C Autoinitialization Table
            1.         Example 8. Processing the C Autoinitialization Table
        5. 6.10.3.5 Initialization of Variables at Load Time
        6. 6.10.3.6 Global Constructors
      4. 6.10.4 Initialization Tables
        1.       Example 9. Initialized Variables Defined in C
        2.       Example 10. Initialized Information for Variables Defined in
    11. 6.11 Dual-State Interworking Under TIABI (Deprecated)
      1. 6.11.1 Level of Dual-State Support
      2. 6.11.2 Implementation
        1. 6.11.2.1 Naming Conventions for Entry Points
        2. 6.11.2.2 Indirect Calls
          1.        Example 11. C Code Compiled for 16-BIS State: sum( )
          2.        Example 12. 16-Bit Assembly Program for
          3.        Example 13. C Code Compiled for 32-BIS State: sum( )
          4.        Example 14. 32-Bit Assembly Program for
  8. 7Using Run-Time-Support Functions and Building Libraries
    1. 7.1 C and C++ Run-Time Support Libraries
      1. 7.1.1 Linking Code With the Object Library
      2. 7.1.2 Header Files
      3. 7.1.3 Modifying a Library Function
      4. 7.1.4 Support for String Handling
      5. 7.1.5 Minimal Support for Internationalization
      6. 7.1.6 Allowable Number of Open Files
      7. 7.1.7 Nonstandard Header Files in the Source Tree
      8. 7.1.8 Library Naming Conventions
    2. 7.2 The C I/O Functions
      1. 7.2.1 High-Level I/O Functions
        1. 7.2.1.1 Formatting and the Format Conversion Buffer
      2. 7.2.2 Overview of Low-Level I/O Implementation
      3. 7.2.3 Device-Driver Level I/O Functions
      4. 7.2.4 Adding a User-Defined Device Driver for C I/O
        1.       Example 1. Mapping Default Streams to Device
      5. 7.2.5 The device Prefix
        1.       Example 2. Program for C I/O Device
    3. 7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
    4. 7.4 Library-Build Process
      1. 7.4.1 Required Non-Texas Instruments Software
      2. 7.4.2 Using the Library-Build Process
        1. 7.4.2.1 Automatic Standard Library Rebuilding by the Linker
        2. 7.4.2.2 Invoking mklib Manually
          1. 7.4.2.2.1 Building Standard Libraries
          2. 7.4.2.2.2 Shared or Read-Only Library Directory
          3. 7.4.2.2.3 Building Libraries With Custom Options
          4. 7.4.2.2.4 The mklib Program Option Summary
      3. 7.4.3 Extending mklib
        1. 7.4.3.1 Underlying Mechanism
        2. 7.4.3.2 Libraries From Other Vendors
  9. 8C++ Name Demangler
    1. 8.1 Invoking the C++ Name Demangler
    2. 8.2 Sample Usage of the C++ Name Demangler
      1.      Example 1. C++ Code for calories_in_a_banana
      2.      Example 2. Resulting Assembly for calories_in_a_banana
      3.      Example 3. Result After Running the C++ Name Demangler
  10.   A Glossary
    1.     A.1 Terminology
  11.   B Revision History
    1.     B.1 Recent Revisions

Implementation-Defined Behavior

The C standard requires that conforming implementations provide documentation on how the compiler handles instances of implementation-defined behavior.

The TI compiler officially supports a freestanding environment. The C standard does not require a freestanding environment to supply every C feature; in particular the library need not be complete. However, the TI compiler strives to provide most features of a hosted environment.

The section numbers in the lists that follow correspond to section numbers in Appendix J of the C99 standard. The numbers in parentheses at the end of each item are sections in the C99 standard that discuss the topic. Certain items listed in Appendix J of the C99 standard have been omitted from this list.

J.3.1 Translation

  • The compiler and related tools emit diagnostic messages with several distinct formats. Diagnostic messages are emitted to stderr; any text on stderr may be assumed to be a diagnostic. If any errors are present, the tool will exit with an exit status indicating failure (non-zero). (3.10, 5.1.1.3)
  • Nonempty sequences of white-space characters are preserved and are not replaced by a single space character in translation phase 3. (5.1.1.2)

J.3.2 Environment

  • The compiler does not support multibyte characters in identifiers, string literals, or character constants. There is no mapping from multibyte characters to the source character set. However, the compiler accepts multibyte characters in comments. See Section 5.6 for details. (5.1.1.2)
  • The name of the function called at program startup is "main" (5.1.2.1)
  • Program termination does not affect the environment; there is no way to return an exit code to the environment. By default, the program is known to have halted when execution reaches the special C$$EXIT label. (5.1.2.1)
  • In relaxed ANSI mode, the compiler accepts "void main(void)" and "void main(int argc, char *argv[])" as alternate definitions of main. The alternate definitions are rejected in strict ANSI mode. (5.1.2.2.1)
  • If space is provided for program arguments at link time with the --args option and the program is run under a system that can populate the .args section (such as CCS), argv[0] will contain the filename of the executable, argv[1] through argv[argc-1] will contain the command-line arguments to the program, and argv[argc] will be NULL. Otherwise, the value of argv and argc are undefined. (5.1.2.2.1)
  • Interactive devices include stdin, stdout, and stderr (when attached to a system that honors CIO requests). Interactive devices are not limited to those output locations; the program may access hardware peripherals that interact with the external state. (5.1.2.3)
  • Signals are not supported. The function signal is not supported. (7.14) (7.14.1.1)
  • The library function getenv is implemented through the CIO interface. If the program is run under a system that supports CIO, the system performs getenv calls on the host system and passes the result back to the program. Otherwise the operation of getenv is undefined. No method of changing the environment from inside the target program is provided. (7.20.4.5)
  • The system function is not supported. (7.20.4.6).

J.3.3. Identifiers

  • The compiler does not support multibyte characters in identifiers. See Section 5.6 for details. (6.4.2)
  • The number of significant initial characters in an identifier is unlimited. (5.2.4.1, 6.4.2)

J.3.4 Characters

  • The number of bits in a byte (CHAR_BIT) is 8. See Section 5.5 for details about data types. (3.6)
  • The execution character set is the same as the basic execution character set: plain ASCII. Characters in the ISO 8859 extended character set are also supported. (5.2.1)
  • The values produced for the standard alphabetic escape sequences are as follows: (5.2.2)
  • Escape Sequence ASCII Meaning Integer Value
    \a BEL (bell) 7
    \b BS (backspace) 8
    \f FF (form feed) 12
    \n LF (line feed) 10
    \r CR (carriage return) 13
    \t HT (horizontal tab) 9
    \v VT (vertical tab) 11
  • The value of a char object into which any character other than a member of the basic execution character set has been stored is the ASCII value of that character. (6.2.5)
  • Plain char is identical to unsigned char, but can be changed to signed char with the --plain_char=signed option. (6.2.5, 6.3.1.1)
  • The source character set and execution character set are both plain ASCII, so the mapping between them is one-to-one. The compiler accepts multibyte characters in comments. See Section 5.6 for details. (6.4.4.4, 5.1.1.2)
  • The compiler currently supports only one locale, "C". (6.4.4.4).
  • The compiler currently supports only one locale, "C". (6.4.5).

J.3.5 Integers

  • No extended integer types are provided. (6.2.5)
  • Negative values for signed integer types are represented as two's complement, and there are no trap representations. (6.2.6.2)
  • No extended integer types are provided, so there is no change to the integer ranks. (6.3.1.1)
  • When an integer is converted to a signed integer type which cannot represent the value, the value is truncated (without raising a signal) by discarding the bits which cannot be stored in the destination type; the lowest bits are not modified. (6.3.1.3)
  • Right shift of a signed integer value performs an arithmetic (signed) shift. The bitwise operations other than right shift operate on the bits in exactly the same way as on an unsigned value. That is, after the usual arithmetic conversions, the bitwise operation is performed without regard to the format of the integer type, in particular the sign bit. (6.5)

J.3.6 Floating point

  • The accuracy of floating-point operations (+ - * /) is bit-exact. The accuracy of library functions that return floating-point results is not specified. (5.2.4.2.2)
  • The compiler does not provide non-standard values for FLT_ROUNDS (5.2.4.2.2)
  • The compiler does not provide non-standard negative values of FLT_EVAL_METHOD (5.2.4.2.2)
  • The rounding direction when an integer is converted to a floating-point number is IEEE-754 "round to even". (6.3.1.4)
  • The rounding direction when a floating-point number is converted to a narrower floating-point number is IEEE-754 "round to even". (6.3.1.5)
  • For floating-point constants that are not exactly representable, the implementation uses the nearest representable value. (6.4.4.2)
  • The compiler does not contract float expressions. (6.5)
  • The default state for the FENV_ACCESS pragma is off. (7.6.1)
  • The TI compiler does not define any additional float exceptions (7.6, 7.12)
  • The default state for the FP_CONTRACT pragma is off. (7.12.2)
  • The "inexact" floating-point exception cannot be raised if the rounded result equals the mathematical result. (F.9)
  • The "underflow" and "inexact" floating-point exceptions cannot be raised if the result is tiny but not inexact. (F.9)

J.3.7 Arrays and pointers

  • When converting a pointer to an integer or vice versa, the pointer is considered an unsigned integer of the same size, and the normal integer conversion rules apply.
  • When converting a pointer to an integer or vice versa, if the bitwise representation of the destination can hold all of the bits in the bitwise representation of the source, the bits are copied exactly. (6.3.2.3)
  • The size of the result of subtracting two pointers to elements of the same array is the size of ptrdiff_t, which is defined in Section 5.5. (6.5.6)

J.3.8 Hints

  • When the optimizer is used, the register storage-class specifier is ignored. When the optimizer is not used, the compiler will preferentially place register storage class objects into registers to the extent possible. The compiler reserves the right to place any register storage class object somewhere other than a register. (6.7.1)
  • The inline function specifier is ignored unless the optimizer is used. For other restrictions on inlining, see Section 2.11.2. (6.7.4)

J.3.9 Structures, unions, enumerations, and bit-fields

  • A "plain" int bit-field is treated as a signed int bit-field. (6.7.2, 6.7.2.1)
  • In addition to _Bool, signed int, and unsigned int, the compiler allows char, signed char, unsigned char, signed short, unsigned shot, signed long, unsigned long, signed long long, unsigned long long, and enum types as bit-field types. (6.7.2.1)
  • Bit-fields may not straddle a storage-unit boundary.(6.7.2.1)
  • Bit-fields are allocated in endianness order within a unit. See Section 6.2.2. (6.7.2.1)
  • Non-bit-field members of structures are aligned as specified in Section 6.2.1. (6.7.2.1)
  • The integer type underlying each enumerated type is described in Section 5.5.1. (6.7.2.2)

J.3.10 Qualifiers

  • The TI compiler does not shrink or grow volatile accesses. It is the user's responsibility to make sure the access size is appropriate for devices that only tolerate accesses of certain widths. The TI compiler does not change the number of accesses to a volatile variable unless absolutely necessary. This is significant for read-modify-write expressions such as += ; for an architecture which does not have a corresponding read-modify-write instruction, the compiler will be forced to use two accesses, one for the read and one for the write. Even for architectures with such instructions, it is not guaranteed that the compiler will be able to map such expressions to an instruction with a single memory operand. It is not guaranteed that the memory system will lock that memory location for the duration of the instruction. In a multi-core system, some other core may write the location after a RMW instruction reads it, but before it writes the result. The TI compiler will not reorder two volatile accesses, but it may reorder a volatile and a non-volatile access, so volatile cannot be used to create a critical section. Use some sort of lock if you need to create a critical section. (6.7.3)

J.3.11 Preprocessing directives

  • Include directives may have one of two forms, " " or < >. For both forms, the compiler will look for a real file on-disk by that name using the include file search path. See Section 2.5.2. (6.4.7).
  • The value of a character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set (both are ASCII). (6.10.1).
  • The compiler uses the file search path to search for an included < > delimited header file. See Section 2.5.2. (6.10.2).
  • he compiler uses the file search path to search for an included " " delimited header file. See Section 2.5.2. (6.10.2). (6.10.2).
  • There is no arbitrary nesting limit for #include processing. (6.10.2).
  • See Section 5.11 for a description of the recognized non-standard pragmas. (6.10.6).
  • The date and time of translation are always available from the host. (6.10.8).

J.3.12 Library functions

  • Almost all of the library functions required for a hosted implementation are provided by the TI library, with exceptions noted in Section 5.16.1. (5.1.2.1).
  • The format of the diagnostic printed by the assert macro is "Assertion failed, (assertion macro argument), file file, line line". (7.2.1.1).
  • No strings other than "C" and "" may be passed as the second argument to the setlocale function (7.11.1.1).
  • No signal handling is supported. (7.14.1.1).
  • The +INF, -INF, +inf, -inf, NAN, and nan styles can be used to print an infinity or NaN. (7.19.6.1, 7.24.2.1).
  • The output for %p conversion in the fprintf or fwprintf function is the same as %x of the appropriate size. (7.19.6.1, 7.24.2.1).
  • The termination status returned to the host environment by the abort, exit, or _Exit function is not returned to the host environment. (7.20.4.1, 7.20.4.3, 7.20.4.4).
  • The system function is not supported. (7.20.4.6).

J.3.13 Architecture

  • The values or expressions assigned to the macros specified in the headers float.h, limits.h, and stdint.h are described along with the sizes and format of integer types are described in Section 5.5. (5.2.4.2, 7.18.2, 7.18.3)
  • The number, order, and encoding of bytes in any object are described in Section 6.2.1. (6.2.6.1)
  • The value of the result of the sizeof operator is the storage size for each type, in terms of bytes. See Section 6.2.1. (6.5.3.4)