GERY022 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   Einführung
  3.   Einführung in die isolierte Signalkette
    1.     Vergleich isolierter Verstärker und isolierter Modulatoren
      1.      Kurzfassung
      2.      Einführung in isolierte Verstärker
      3.      Einführung in isolierte Modulatoren
      4.      Leistungsvergleich zwischen isolierten Verstärkern und isolierten Modulatoren
      5.      Isolierte Modulatoren in Traktionsumrichtern
      6.      Isolierte Verstärker und Modulatoren, Empfehlungen
      7.      Fazit
    2.     Die ersten Isolationsverstärker von TI mit extrem breiten Luft- und Kriechstrecken
      1.      Anwendungshinweis
  4.   Auswahlbäume
  5.   Strommessung
    1.     Shunt-Widerstandsauswahl für isolierte Datenwandler
      1.      17
    2.     Designüberlegungen für die isolierte Strommessung
      1.      19
      2.      Fazit
      3.      Quellennachweise
      4.      Verwandte Websites
    3.     Isolierte Strommessschaltung mit ±50 mV-Eingang und unsymmetrischem Ausgang
      1.      24
    4.     Isolierte Strommessschaltung mit ±50 mV-Eingang und Differenzausgang
      1.      26
    5.     Isolierte Strommessschaltung mit ±250 mV Eingangsbereich und unsymmetrischer Ausgangsspannung
      1.      Designziele
      2.      Designbeschreibung
      3.      Designhinweise
      4.      Designschritte
      5.      Design-Simulationen
      6.      DC-Simulationsergebnisse
      7.      Ergebnisse der AC-Simulation im geschlossenen Regelkreis
      8.      Ergebnisse der Transienten-Simulation
      9.      Designreferenzen
      10.      Design empfohlener isolierter Verstärker
      11.      Design Alternativer Isolierter Verstärker
    6.     Isolierter Strommessschaltkreis mit ±250 mV-Eingang und Differenzausgang
      1.      Designziele
      2.      Designbeschreibung
      3.      Designhinweise
      4.      Designschritte
      5.      Design-Simulationen
      6.      DC-Simulationsergebnisse
      7.      Ergebnisse der Closed-Loop-AC-Simulation
      8.      Ergebnisse der Transienten-Simulation
      9.      Designreferenzen
      10.      Vorgestellte Operationsverstärker
      11.      Design alternativer Operationsverstärker
    7.     Isolierter Überstromschutzschaltkreis
      1.      52
    8.     Anschluss eines Differenzialausgangsverstärkers (isoliert) an einen A/D-Wandler mit unsymmetrischem Eingang
      1.      54
    9.     Verwendung von AMC3311 zur Stromversorgung des AMC23C11 für isolierte Sensorik und Fehlererkennung
      1.      Anwendungshinweis
    10.     Isolierte Strommessschaltung mit Frontend-Verstärkungsstufe
      1.      58
    11.     Genauigkeitsvergleich von isolierten Shunt- und Geschlossener Regelkreis-Strommessungen
      1.      60
  6.   Spannungserfassung
    1.     Maximieren Sie die Leistungswandlung und die Wirksamkeit der Motorsteuerung durch isolierte Spannungserfassung
      1.      63
      2.      Lösungen zur Hochspannungserfassung
      3.      Integrierte Widerstandsbausteine
      4.      Unsymmetrische Ausgangsspannung
      5.      Anwendungsfälle für integrierte isolierte Spannungserkennung
      6.      Fazit
      7.      Weitere Ressourcen
    2.     Höhere Genauigkeit und Leistung mit integrierten isolierten Verstärkern und Modulatoren mit Hochspannungswiderstand
      1.      Kurzfassung
      2.      Einführung
      3.      Vorteile von isolierten Verstärkern und Modulatoren mit Hochspannungswiderstand
        1.       Platzsparend
        2.       Verbesserte Temperatur- und Lebensdauerdrift von integrierten HV-Widerständen
        3.       Ergebnisse mit hoher Genauigkeit
        4.       Beispiel für vollständig integrierte Widerstände vs. Zusätzlicher externer Widerstand
        5.       Bausteinauswahlbaum und gängige AC/DC-Anwendungsfälle
      4.      Zusammenfassung
      5.      Quellennachweise
    3.     Isolierte Verstärker mit differenziellen, unsymmetrischen Festverstärkern und ratiometrischen Ausgängen für Spannungssensoranwendungen
      1.      Kurzfassung
      2.      Einführung
      3.      Übersicht über differenzielle, unsymmetrische und ratiometrische Ausgänge mit fester Verstärkung
        1.       Isolierte Verstärker mit Differenzausgang
        2.       Isolierte Verstärker mit unsymmetrischem Ausgang mit fester Verstärkung
        3.       Trennverstärker mit unsymmetrischem, ratiometrischem Ausgang
      4.      Anwendungsbeispiele
        1.       Produktauswahlbaum
      5.      Zusammenfassung
      6.      Quellennachweise
    4.     Isolierte Spannungsmessschaltung mit ±250 mV-Eingang und Differenzausgang
      1.      93
    5.     Split-Tap-Verbindung für isolierte Line-to-Line-Spannungsmessung mit AMC3330
      1.      95
    6.     ±12 V-Spannungssensorschaltung mit isoliertem Verstärker und pseudo-differenziellem Eingang SAR-ADC
      1.      97
    7.     ±12 V-Spannungssensorschaltung mit isoliertem Verstärker und SAR-ADC mit Differenzeingang
      1.      99
    8.     Isolierter Schaltkreis zur Erkennung von Unter- und Überspannung
      1.      101
    9.     Isolierter Nulldurchgangsschaltkreis
      1.      103
    10.     Isolierter Spannungssensorschaltkreis mit ±480 V und Differenzausgang
      1.      105
  7.   EMI-Leistung
    1.     Beste EMI-Leistung in ihrer Klasse bei Strahlungsemissionen mit isolierten Verstärkern
      1.      Beste EMI-Leistung in ihrer Klasse bei Strahlungsemissionen mit isolierten Verstärkern
      2.      Einführung
      3.      Aktuelle Generation von isolierten Verstärkern von Texas Instruments Strahlungsemissionenleistung
      4.      Frühere Generationen von isolierten Verstärkern von Texas Instruments strahlen Störstrahlungsleistung aus
      5.      Fazit
      6.      Quellennachweise
    2.     Bewährte Methoden zur Dämpfung von EMI-Störstrahlungen der AMC3301-Familie
      1.      Kurzfassung
      2.      Einführung
      3.      Auswirkungen der Eingangsanschlüsse auf die Strahlungsemissionen der AMC3301-Familie
      4.      Dämpfung der Strahlungsemissionen der AMC3301-Familie
        1.       Ferritperlen und Gleichtaktdrosseln
        2.       Leiterplatten-Schaltpläne und bewährte Methoden für das Layout für die AMC3301-Familie
      5.      Verwendung mehrere AMC3301-Geräte
        1.       Bausteinausrichtung
        2.       Bewährte Methoden für das Leiterplatten-Layout für mehrere AMC3301
      6.      Fazit
      7.      Tabelle der AMC3301-Familie
  8.   Endgeräte
    1.     Vergleich von isolierten Shunt- und Hall-basierten Strommesslösungen in Hybrid- und Elektrofahrzeugen
      1.      128
    2.     Designüberlegungen für die Strommessung in DC-EV-Ladeanwendungen
      1.      Kurzfassung
      2.      Einführung
        1.       DC-Ladestation für Elektrofahrzeuge
        2.       Auswahl der Strommesstechnologie und äquivalentes Modell
          1.        Strommessung mit Shunt-basierter Lösung
          2.        Äquivalenzmodell der Sensortechnologie
      3.      Strommessung in AC/DC-Wandlern
        1.       Grundlegende Hardware und Steuerungsbeschreibung von AC/DC
          1.        AC Stromregelkreise
          2.        Gleichspannungsregelkreis
        2.       Punkt A und B – AC/DC AC-Phasenstrommessung
          1.        Auswirkungen der Bandbreite
            1.         Stationäre Zustandsanalyse: Grund- und Nulldurchgangs-Ströme
            2.         Transientenanalyse: Sprungleistung und Spannungseinbruchverhalten
          2.        Auswirkungen der Latenz
            1.         Fehleranalyse: Kurzschluss im Stromnetz
          3.        Auswirkungen des Verstärkungsfehlers
            1.         Spannungsstörung in AC/DC durch Verstärkungsfehler
            2.         AC/DC-Antwort auf durch Verstärkungsfehler verursachte Stromversorgungsstörung
          4.        Auswirkungen des Offset
        3.       Punkt C und D – AC/DC DC-Link-Strommessung
          1.        Auswirkungen der Bandbreite auf die Feed-Forward-Leistung
          2.        Auswirkungen der Latenz auf den Schutz der Leistungsschalter
          3.        Auswirkungen des Verstärkungsfehlers auf die Leistungsmessung
            1.         Transientenanalyse: Feed Forward in Punkt D
          4.        Auswirkungen des Offset
        4.       Zusammenfassung der positiven und negativen Punkte an den Punkten A, B, C1/2 und D1/2 sowie Produktvorschläge
      4.      Strommessung in DC/DC-Wandlern
        1.       Grundlegendes Funktionsprinzip eines isolierten DC/DC-Wandlers mit Phasenverschiebungssteuerung
        2.       Punkt E, F – DC/DC-Strommessung
          1.        Auswirkungen der Bandbreite
          2.        Auswirkungen des Verstärkungsfehlers
          3.        Auswirkung des Offsetfehlers
        3.       Punkt G – DC/DC-Tankstrommessung
        4.       Zusammenfassung der Sensorpunkte E, F, G und Produktvorschläge
      5.      Fazit
      6.      Quellennachweise
    3.     Verwendung isolierter Komparatoren zur Fehlererkennung in Elektromotorantrieben
      1.      Einführung
      2.      Einführung in Elektromotorantriebe
      3.      Verständnis von Fehlerereignissen in Elektromotorantrieben
      4.      Zuverlässige Erkennung und Schutz in Elektromotorantrieben
      5.      Anwendungsfall Nr. 1: Bidirektionale Phasenüberstromerkennung
      6.      Anwendungsfall Nr. 2: DC+-Überstromerkennung
      7.      Anwendungsfall Nr. 3: DC–Überstrom- oder Kurzschlusserkennung
      8.      Anwendungsfall Nr. 4: DC-Link (DC+ zu DC-) Überspannungs- und Unterspannungserkennung
      9.      Anwendungsfall Nr. 5: Übertemperaturerkennung des IGBT-Moduls
    4.     Diskrete DESAT für optokompatible isolierte Gate-Treiber UCC23513 in Motorantrieben
      1.      Kurzfassung
      2.      Einführung
      3.      Systemherausforderung bei isolierten Gate-Treibern mit integriertem DESAT
      4.      Systemansatz mit UCC23513 und AMC23C11
        1.       Systemübersicht und Schlüsselspezifikation
        2.       Schaltplandesign
          1.        Schaltplan
          2.        Konfigurieren des VCE(DESAT)-Schwellenwerts und des DESAT-Bias-Strom
          3.        DESAT-Ausblendzeit
          4.        DESAT Deglitch-Filter
        3.       Referenz-Platinenlayout
      5.      Simulations- und Testergebnisse
        1.       Simulationsschaltung und Ergebnisse
          1.        Simulationsschaltung
          2.        Simulationsergebnisse
        2.       Testergebnisse mit 3-Phasen-IGBT-Inverter
          1.        IGBT-Bremsprüfung
          2.        Testergebnisse mit einem 3-Phasen-Inverter mit Phase-zu-Phase-Kurzschluss
      6.      Zusammenfassung
      7.      Quellennachweise
    5.     Isolierte Spannungserfassung in AC-Motorantrieben
      1.      Einführung
      2.      Fazit
      3.      Quellennachweise
    6.     Hochleistungsfähige isolierte Strom- und Spannungsmessung in Server-Netzteilen
      1.      Anwendungshinweis
  9.   Zusätzliche Referenzdesigns/Schaltkreise
    1.     Entwicklung einer Bootstrap-Ladepumpen-Stromversorgung für einen isolierten Verstärker
      1.      Zusammenfassung
      2.      Einführung
      3.      Bootstrap StromversorgungenDesign
        1.       Auswahl des Ladungspumpenkondensators
        2.       Simulation in TINA-TI
        3.       Hardware-Test mit AMC1311-Q1
      4.      Zusammenfassung
      5.      Referenz
    2.     Taktflankenverzögerungskompensation mit isolierten Modulatoren Digitale Schnittstelle zu MCUs
      1.      Zusammenfassung
      2.      Einführung
      3.      Design-Herausforderung durch Timing-Spezifikationen für digitale Schnittstellen
      4.      Designansatz mit Taktflankenverzögerungskompensation
        1.       Taktsignalkompensation mit Softwarekonfigurierbarer Phasenverzögerung
        2.       Taktsignalkompensation mit Hardware-konfigurierbarer Phasenverzögerung
        3.       Taktsignalkompensation durch Taktrückkehr
        4.       Taktsignalkompensation durch Taktumkehr an der MCU
      5.      Test und Validierung
        1.       Prüfausrüstung und Software
        2.       Testen der Taktsignalkompensation mit softwarekonfigurierbarer Phasenverzögerung
          1.        Testeinrichtung
          2.        Test-Messergebnisse
        3.       Testen der Taktsignalkompensation durch Taktumkehr an der MCU
          1.        Testeinrichtung
          2.        Test-Messergebnisse
            1.         Testergebnis – Keine Taktumkehr des Takteingangs bei GPIO123
            2.         Testergebnis – Taktumkehr des Takteingangs bei GPIO123
        4.       Validierung des Timings digitaler Schnittstellen durch Berechnungstool
          1.        Digitale Schnittstelle ohne Kompensationsmethode
          2.        Häufig verwendete Methode – Reduzierung der Taktfrequenz
          3.        Taktflankenkompensation Mit Software-konfigurierbarer Phasenverzögerung
      6.      Fazit
      7.      Quellennachweise
    3.     Verwendung von AMC3311 zur Stromversorgung des AMC23C11 für isolierte Sensorik und Fehlererkennung
      1.      Anwendungshinweis

Einführung

Der weltweite Markt für Elektrofahrzeuge (EVS) und Hybrid-Elektrofahrzeuge (HEVs) wächst rasant, da diese Fahrzeuge im Vergleich zu Benzin- oder Dieselfahrzeugen eine höhere Kraftstoffeffizienz und geringere Emissionen bieten und Strom aus erneuerbaren Energiequellen nutzen. Zur Steuerung des Energieflusses und zur Optimierung der Effizienz von HEV/EV-Antriebsstrang-Subsystemen wie Traktionswechselrichtern, fahrzeuginternen Ladegeräten (OBCs), DC/DC-Wandlern und Batteriemanagementsystemen (BMS) ist eine präzise und genaue Strommessung unverzichtbar. Diese Hochspannungssubsysteme müssen große Ströme bei hohen Spannungen, typischerweise > 400 V, messen. Daher erfordern diese Strommessungen sowohl eine Isolierung als auch eine hohe Leistung in rauen Automobilumgebungen.

Verschiedene Isolierte Strommessverfahren

Jede HEV/EV-Anwendung hat unterschiedliche Kosten, Genauigkeit, Signalbandbreite, Latenz, Messbereich, Isolationswerte und Anforderungen an die Gehäusegröße. Es gibt mehrere Methoden zur isolierten Strommessung. Allerdings sind die primären Methoden, die in HEV/EV-Subsystemen verwendet werden, entweder Shunt-basierte mit isolierten Verstärkern (Abbildung 68) oder isolierte Modulatoren (Abbildung 69) oder Hall-basierte mit Open-Loop- ( ) oder Closed-LoopAbbildung 70- ( )Abbildung 71Hall-Sensoren.

 Isolierte VerstärkerAbbildung 68 Isolierte Verstärker
 Isoliertes ModulAbbildung 69 Isoliertes Modul
 Hall-Sensor mit offenem RegelkreisAbbildung 70 Hall-Sensor mit offenem Regelkreis
 Hall-Sensor mit geschlossenem RegelkreisAbbildung 71 Hall-Sensor mit geschlossenem Regelkreis

Vergleich von Shunt- und Hall-basierten Methoden

Früher haben die Entwickler Shunt-basierte Lösungen für Messungen mit niedrigem Strom (<50 A) und Hall-basierte Lösungen für Messungen mit hohem Strom (>50 A) bevorzugt. Aufgrund der steigenden Anforderungen an die Genauigkeit von Strommessungen migrieren Automobilzulieferer jedoch von Hall-basierten zu Shunt-basierten Methoden, insbesondere in Hochstromanwendungen. Sogar unter Automobilherstellern gibt es den Trend, von Lösungen auf der Basis isolierter Verstärker zu Lösungen auf der Basis isolierter Modulatoren zu wechseln, um die Messgenauigkeit weiter zu verbessern.

Texas Instruments bietet klassenbeste isolierte Verstärker und isolierte Modulatoren, die in Kombination mit hochpräzisen Shunts dazu beitragen, sehr genaue isolierte Strommessungen über die Temperatur zu erreichen. Tabelle 10 zeigt die grundlegenden Unterschiede zwischen Shunt- und Hall-basierten isolierten Strommesslösungen in Hochstrom-Automobilumgebungen.

Tabelle 10 Unterschied zwischen Shunt- und Hall-basierter isolierter Strommessung
KATEGORIE SHUNT-BASIERT HALL-BASIERT
Lösungsgröße Ähnlich Ähnlich
Offset, Abweichung Sehr niedrig Mittel
Offset-Drift über die Temperatur Niedrig Mittel
Genauigkeit <0,5 % nach Kalibrierung <2 % nach Kalibrierung
Rauschen Sehr niedrig Hoch
Bandbreite Ähnlich Ähnlich
Latenz Ähnlich Ähnlich
Nichtlinearität Sehr niedrig Hoch
Langzeitstabilität Sehr hoch Mittel
Kosten Ähnlich Ähnlich
Vibrationseinwirkung Sehr niedrig Niedrig
Verlustleistung Niedrig Sehr niedrig
Anpassung Flexibel Begrenzt

Analyse von Shunt- und Hall-basierten Methoden

  • Hall-Sensoren sind von Natur aus isoliert, was einen Ansatz mit nur einem Modul ermöglicht. Auf der anderen Seite benötigen Shunt-basierte Lösungen einen isolierten Verstärker oder Modulator und eine isolierte Stromversorgung für die Seite mit hoher Gleichtaktspannung.
  • Shunt-basierte Lösungen weisen einen sehr geringen anfänglichen Offset auf, weisen eine geringere Offset-Drift über die Temperatur auf und sind weniger anfällig für externe Magnetfelder.
  • Shunt-basierte Lösungen sind im Vergleich zu Hall-basierten Lösungen, die nicht linear sind, über den gesamten Spannungsbereich linear. Dies gilt insbesondere für den Nulldurchgang und in der Nähe des Sättigungsbereichs des Magnetkerns.
  • Shunt-basierte Lösungen erzielen eine bessere DC-Genauigkeit über den Temperaturbereich im Vergleich zu Hall-basierten Lösungen mit einfacher Einzeitkalibrierung. Die Genauigkeit von Shunt-basierten Lösungen ist insbesondere bei niedrigen Strömen aufgrund der begrenzten Empfindlichkeit gegenüber externen Magnetfeldern viel besser.
  • Der Spannungsabfall am Inline-Shunt führt zu Wärmeableitung und Leistungsverlust. Allerdings sind mit Verbesserungen der Shunt-Technologie die Shunts leichter geworden, die ohmschen Werte sind gesunken und die Genauigkeit und das Driftverhalten wurden verbessert. Die Verwendung von niederohmigen Shunts führt zu einer geringeren Wärmeableitung. Darüber hinaus unterstützen die isolierten Verstärker und Modulatoren von Texas Instruments sehr kleine Eingangsspannungsbereiche (±50 mV und ±250 mV) mit einer überlegenen Gesamtgenauigkeit. Diese Verbesserungen der Shunt-Technologie und die Verfügbarkeit von isolierten Bausteinen mit kleinem Eingangsbereich ermöglichen Systemen eine geringere Wärmeableitung ohne Kompromisse bei der Gesamtmessgenauigkeit.
  • Hall-Sensoren haben in der Regel einen begrenzten Betriebstemperaturbereich (normalerweise von –40 bis +85 Grad Celsius), während Shunt-basierte Lösungen höhere Betriebstemperaturbereiche (typischerweise von –40 bis +125 Grad Celsius) unterstützen können.
  • Sowohl Hall-basierte als auch Shunt-basierte isolierte Verstärkerlösungen bieten eine ähnliche Signalbandbreite, in der Regel bis zu einigen Hundert Kilohertz (kHz). Isolierte Modulatoren bieten jedoch einen Hochgeschwindigkeits-Bitstrom-Ausgang, mit dem der Benutzer digitale Filterung extern implementieren und anpassen kann. Diese Anpassung ermöglicht es dem Benutzer, Lösungen mit hoher Signalbandbreite und geringer Latenz zu entwickeln.

Referenzdesign für isolierte, shunt-basierte Stromerkennung

Ein Traktionsinverter steuert den Elektromotor und ist eine Schlüsselkomponente im HEV/EV-Antriebsstrang. Ein Traktionsinverter erfordert eine genaue Strommessung bei hohen Gleichtaktspannungen. Strommessungen in Traktionsumrichtern können daher mit einer von zwei Shunt-basierten Methoden durchgeführt werden.

Abbildung 72 Zeigt den Spannungsabfall über den Shunt auf der heißen (hohen Gleichtaktspannung) Seite ist von der kalten Seite mit einem für die Automobilindustrie geeigneten, verstärkten isolierten Verstärker wie dem AMC1301-Q1 isoliert http://www.ti.com/product/AMC1301-Q1.

Abbildung 73 Zeigt die zweite Shunt-basierte Messmethode, bei der ein verstärkter isolierter Modulator mit Automobilzulassung wie der AMC1305M25-Q1 verwendet wird, um den Spannungsabfall über den Shunt auf der heißen Seite von der kalten Seite zu isolieren.

 Isolierte Strommessung mit isolierten VerstärkernAbbildung 72 Isolierte Strommessung mit isolierten Verstärkern
 Isolierte Strommessung mit isolierten ModulatorenAbbildung 73 Isolierte Strommessung mit isolierten Modulatoren

Um die Messgenauigkeit zu verbessern, verwenden Sie einen isolierten Modulator, da diese Lösung eine zusätzliche Analog-Digital-Wandlungsstufe und die damit verbundenen Fehler eliminiert. Der Hochgeschwindigkeits-Bitstrom-Ausgang der isolierten Modulatoren wird von Mikrocontrollern (MCUs) wie der C2000-Familie von TI, die über ein integriertes Sigma-Delta-Filtermodul (SDFM) verfügen, oder von einem FPGA gefiltert, wodurch der Benutzer die Signalbandbreite und -Genauigkeit feinabstimmen kann.

Empfehlungen für isolierte Bausteine für die Automobilindustrie

BAUSTEIN ISOLIERUNG BESCHREIBUNG
AMC1305-Q1 Verstärkt Isolierter Modulator mit ±50 mV, ±250 mV
AMC1301-Q1 Verstärkt Isolierter Verstärker mit ±250 mV
AMC1302-Q1 Verstärkt Isolierter Verstärker mit ±50 mV

Fazit

Für die isolierte Strommessung in HEV/EV-Subsystemen gibt es mehrere Messmethoden, einschließlich Shunt-basierter und Hall-basierter Methoden. Mit Fortschritten bei erschwinglichen hochpräzisen Shunts und hochleistungsfähigen isolierten Verstärkern und Modulatoren sind Shunt-basierte Lösungen zu einer guten Alternative zu herkömmlichen Hall-basierten Lösungen geworden.