SLUSFR7 August   2025 BQ24810

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Device Power Up
        1. 6.3.1.1 Battery Only
        2. 6.3.1.2 Adapter Detect and ACOK Output
          1. 6.3.1.2.1 Adapter Overvoltage (ACOV)
        3. 6.3.1.3 REGN LDO
      2. 6.3.2 System Power Selection
      3. 6.3.3 Current and Power Monitor
        1. 6.3.3.1 High Accuracy Current Sense Amplifier (IADP and IDCHG)
        2. 6.3.3.2 High Accuracy Power Sense Amplifier (PMON)
      4. 6.3.4 Processor Hot Indication for CPU Throttling
      5. 6.3.5 Input Current Dynamic Power Management
        1. 6.3.5.1 Setting Input Current Limit
      6. 6.3.6 Two-Level Adapter Current Limit (Peak Power Mode)
      7. 6.3.7 EMI Switching Frequency Adjust
      8. 6.3.8 Device Protections Features
        1. 6.3.8.1 Charger Timeout
        2. 6.3.8.2 Input Overcurrent Protection (ACOC)
        3. 6.3.8.3 Charge Overcurrent Protection (CHG_OCP)
        4. 6.3.8.4 Battery Overvoltage Protection (BATOVP)
        5. 6.3.8.5 Battery Short
        6. 6.3.8.6 Thermal Shutdown Protection (TSHUT)
        7. 6.3.8.7 Inductor Short, MOSFET Short Protection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Battery Charging in Buck Mode
        1. 6.4.1.1 Setting the Charge Current
        2. 6.4.1.2 Setting the Charge Voltage
        3. 6.4.1.3 Automatic Internal Soft-Start Charger Current
      2. 6.4.2 Hybrid Power Boost Mode
      3. 6.4.3 Battery Only Boost Mode
        1. 6.4.3.1 Setting AC_PLUG_EXIT_DEG in Battery Only Boost Mode
        2. 6.4.3.2 Setting Minimum System Voltage in Battery Only Boost Mode
      4. 6.4.4 Battery Discharge Current Regulation in Hybrid Boost Mode and Battery Only Boost Mode
      5. 6.4.5 Battery LEARN Cycle
      6. 6.4.6 Converter Operational Modes
        1. 6.4.6.1 Continuous Conduction Mode (CCM)
        2. 6.4.6.2 Discontinuous Conduction Mode (DCM)
        3. 6.4.6.3 Non-Sync Mode and Light Load Comparator
    5. 6.5 Programming
      1. 6.5.1 SMBus Interface
        1. 6.5.1.1 SMBus Write-Word and Read-Word Protocols
        2. 6.5.1.2 Timing Diagrams
    6. 6.6 Register Maps
      1. 6.6.1  Battery-Charger Commands
      2. 6.6.2  Setting Charger Options
        1. 6.6.2.1 ChargeOption0 Register
      3. 6.6.3  ChargeOption1 Register
      4. 6.6.4  ChargeOption2 Register
      5. 6.6.5  ChargeOption3 Register
      6. 6.6.6  ChargeOption4 Register
      7. 6.6.7  ProchotOption0 Register
      8. 6.6.8  ProchotOption1 Register
      9. 6.6.9  ProchotStatus Register
      10. 6.6.10 Charge Current Register
      11. 6.6.11 Charge Voltage Register
      12. 6.6.12 Discharge Current Register
      13. 6.6.13 Minimum System Voltage Register
      14. 6.6.14 Input Current Register
      15. 6.6.15 Register Exceptions
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Typical System Schematic
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1  Adapter Current Sense Filter
          2. 7.2.1.2.2  Negative Output Voltage Protection
          3. 7.2.1.2.3  Reverse Input Voltage Protection
          4. 7.2.1.2.4  Reduce Battery Quiescent Current
          5. 7.2.1.2.5  CIN Capacitance
          6. 7.2.1.2.6  L1 Inductor Selection
          7. 7.2.1.2.7  CBATT Capacitance
          8. 7.2.1.2.8  Buck Charging Internal Compensation
          9. 7.2.1.2.9  CSYS Capacitance
          10. 7.2.1.2.10 Battery Only Boost Internal Compensation
          11. 7.2.1.2.11 Power MOSFETs Selection
          12. 7.2.1.2.12 Input Filter Design
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Migration from Previous Devices (Does Not Support Battery Only Boost)
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
          1. 7.2.2.2.1 CSYS Capacitance
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Examples
        1. 7.4.2.1 Layout Consideration of Current Path
        2. 7.4.2.2 Layout Consideration of Short Circuit Protection
        3. 7.4.2.3 Layout Consideration for Short Circuit Protection
  9. Device and Documentation Support
    1. 8.1 Third-Party Products Disclaimer
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RUY|28
散热焊盘机械数据 (封装 | 引脚)
订购信息
CIN Capacitance

CIN provides input capacitance when the converter is operating in forward buck charging mode. This should have enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current occurs where the duty cycle is closest to 50% and can be estimated by Equation 6:

Equation 6. BQ24810

Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be placed as close as possible to the drain of the high side switching MOSFET (HIFET). The voltage rating of the capacitor must be higher than normal input voltage level. 25-V rating or higher capacitor is preferred for 19- V to 20-V input voltage. 10- to 20-μF capacitance is suggested for typical of 3- to 4-A charging current.

Ceramic capacitors show a dc-bias effect. This effect reduces the effective capacitance when a dc-bias voltage is applied across a ceramic capacitor, as on the input capacitor of a charger. The effect may lead to a significant capacitance drop, especially for high input voltages and small capacitor packages. See the manufacturer's data sheet about the performance with a dc bias voltage applied. It may be necessary to choose a higher voltage rating or nominal capacitance value in order to get the required value at the operating point.