ZHCUD04 May   2025

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 术语
    2. 1.2 主要系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
      1. 2.2.1 输入电容器选型
      2. 2.2.2 直流侧
      3. 2.2.3 交流侧
    3. 2.3 重点产品
      1. 2.3.1 TMDSCNCD28P55X - controlCARD 评估模块
        1. 2.3.1.1 硬件特性
        2. 2.3.1.2 软件功能
      2. 2.3.2 LMG2100R026 - 100V、53A GaN 半桥功率级
      3. 2.3.3 LMG365xR035 - 具有集成式驱动器和保护功能的 650V 35mΩ GaN FET
      4. 2.3.4 TMCS1123 - 具有增强型隔离的精密 250kHz 霍尔效应电流传感器
      5. 2.3.5 TMCS1133 - 具有增强型隔离的精密 1MHz 霍尔效应电流传感器
      6. 2.3.6 INA185 - 26V、350kHz 双向高精度电流检测放大器
      7. 2.3.7 LM5164 – 具有超低 IQ 的 100V 输入、1A 同步直流/直流降压转换器
      8. 2.3.8 ISO6762 – EMC 性能优异的通用六通道增强型数字隔离器
  9. 3系统设计原理
    1. 3.1 光伏逆变器的隔离
    2. 3.2 拓扑概述
    3. 3.3 控制理论
      1. 3.3.1 单相移和扩展相移调制技术
      2. 3.3.2 零电压开关和循环电流
      3. 3.3.3 优化的控制方法
      4. 3.3.4 死区时间补偿
      5. 3.3.5 频率调制
      6. 3.3.6 控制器方框图
    4. 3.4 MPPT 和输入电压纹波
  10. 4硬件、测试要求和测试结果
    1. 4.1 硬件要求
    2. 4.2 测试设置
      1. 4.2.1 电路板检查
      2. 4.2.2 直流-直流测试
      3. 4.2.3 直流-交流测试
    3. 4.3 测试结果
  11. 5设计和文档支持
    1. 5.1 设计文件
      1. 5.1.1 原理图
      2. 5.1.2 BOM
    2. 5.2 工具与软件
    3. 5.3 文档支持
    4. 5.4 支持资源
    5. 5.5 商标
  12. 6作者简介

光伏逆变器的隔离

由于以下各种原因,PV 微型逆变器需要在 PV 电池板和交流电网之间进行隔离:

  • 电气安全
  • 减少电池板和电网之间的共模电流流动
  • 高输入输出电压比

从安全角度来看,由于微型逆变器与 PV 电池板组合通常由最终用户安装,因此需要在电池板和电网侧之间实施增强型隔离,以减轻交流电网一侧的电击危险。

由于 PV 表面暴露在接地屋顶或附近的其他表面上方,因此共模电流是 PV 应用中众所周知的挑战。这种巨大的表面会导致电池板和地面之间产生高寄生电容(高达 200nF/kW)。如果没有充分降低转换器的共模电压,这个寄生电容会导致高共模电流流入系统。显著减少系统中流动的寄生电流的一种常见策略是在电池板和电网之间采用隔离级。

TIDA-010954 PV 电池板寄生电容图 3-1 PV 电池板寄生电容
TIDA-010954 阻断共模噪声图 3-2 阻断共模噪声