ZHCSXN6 December   2024 TAS5815

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5.   器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
  8. 典型特性
    1. 6.1 采用 BD 调制的桥接负载 (BTL) 配置曲线
    2. 6.2 采用 1SPW 调制的桥接负载 (BTL) 配置曲线
    3. 6.3 采用 BD 调制的并行桥接负载 (PBTL) 配置
    4. 6.4 采用 1SPW 调制的并行桥接负载 (PBTL) 配置
  9. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 电源
      2. 7.3.2 器件时钟
      3. 7.3.3 串行音频端口 – 时钟速率
      4. 7.3.4 串行音频端口 - 数据格式和位深度
      5. 7.3.5 时钟暂停自动恢复
      6. 7.3.6 采样率动态变化
      7. 7.3.7 数字音频处理
      8. 7.3.8 D 类音频放大器
        1. 7.3.8.1 扬声器放大器增益选择
    4. 7.4 器件功能模式
      1. 7.4.1 软件控制
      2. 7.4.2 扬声器放大器工作模式
        1. 7.4.2.1 BTL 模式
        2. 7.4.2.2 PBTL 模式
      3. 7.4.3 低 EMI 模式
        1. 7.4.3.1 采用展频技术更大限度地降低 EMI
        2. 7.4.3.2 通过通道间相移更大限度地降低 EMI
        3. 7.4.3.3 通过多器件 PWM 相位同步更大限度地降低 EMI
      4. 7.4.4 热折返
      5. 7.4.5 器件状态控制
      6. 7.4.6 器件调制
        1. 7.4.6.1 BD 调制
        2. 7.4.6.2 1SPW 调制
        3. 7.4.6.3 混合调制
      7. 7.4.7 Load Detect
        1. 7.4.7.1 短路负载检测
        2. 7.4.7.2 开路负载检测
    5. 7.5 编程和控制
      1. 7.5.1 I2C 串行通信总线
      2. 7.5.2 目标地址
        1. 7.5.2.1 随机写入
        2. 7.5.2.2 随机读取
        3. 7.5.2.3 顺序写入
        4. 7.5.2.4 顺序读取
        5. 7.5.2.5 DSP 存储器 Book、Page 和 BQ 更新
        6. 7.5.2.6 使用示例
        7. 7.5.2.7 校验和
          1. 7.5.2.7.1 循环冗余校验 (CRC) 校验和
          2. 7.5.2.7.2 异或 (XOR) 校验和
      3. 7.5.3 通过软件进行控制
        1. 7.5.3.1 启动过程
        2. 7.5.3.2 关断过程
        3. 7.5.3.3 保护和监控
          1. 7.5.3.3.1 过流关断 (OCSD)
          2. 7.5.3.3.2 直流检测
          3. 7.5.3.3.3 器件过热保护
          4. 7.5.3.3.4 过压保护
          5. 7.5.3.3.5 欠压保护
          6. 7.5.3.3.6 时钟故障
  10. 寄存器映射
    1. 8.1 CONTROL PORT 寄存器
  11. 应用信息免责声明
    1. 9.1 应用信息
      1. 9.1.1 自举电容器
      2. 9.1.2 电感器选型
      3. 9.1.3 电源去耦
      4. 9.1.4 输出 EMI 滤波
    2. 9.2 典型应用
      1. 9.2.1 2.0(立体声 BTL)系统
        1. 9.2.1.1 设计要求
      2. 9.2.2 详细设计过程
        1. 9.2.2.1 第 1 步:硬件完整性
        2. 9.2.2.2 第 2 步:扬声器调优
        3. 9.2.2.3 第 3 步:软件集成
      3. 9.2.3 单声道 (PBTL) 系统
        1. 9.2.3.1 设计要求
      4. 9.2.4 高级 2.1 系统(两个 TAS5815 器件)
  12. 10电源相关建议
    1. 10.1 DVDD 电源
    2. 10.2 PVDD 电源
  13. 11布局
    1. 11.1 布局指南
      1. 11.1.1 音频放大器通用指南
      2. 11.1.2 PVDD 网络中 PVDD 旁路电容布置的重要性
      3. 11.1.3 优化散热性能
        1. 11.1.3.1 器件、覆铜和元件布局
        2. 11.1.3.2 模板图案
          1. 11.1.3.2.1 PCB 尺寸和过孔排列
          2. 11.1.3.2.2 焊接模板
    2. 11.2 布局示例
  14. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 器件命名规则
    2. 12.2 支持资源
    3. 12.3 商标
    4. 12.4 静电放电警告
    5. 12.5 术语表
  15. 13修订历史记录
  16. 14机械和封装信息
    1. 14.1 封装选项附录

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

电源

为了方便系统设计,除了(典型值)12V 或 26.4V 功率级电源外,TAS5815 只需要一个 3.3V 或 1.8V 电源。两个内部稳压器为栅极驱动电路和内部电路提供合适的电压电平。外部引脚仅作为片外旁路电容器的连接点提供,以对电源进行滤波。将外部电路连接到这些稳压器输出可能导致性能降低并损坏器件。此外,所有需要浮动电压电源的电路(例如,高侧栅极驱动)都通过内置自举电路进行调节,而该电路只需很少的外部电容器。为了提供良好的电气和声学特性,输出级的 PWM 信号路径被设计为相同的独立半桥。为此,每个半桥都有单独的自举引脚 (BST_x)。栅极驱动电压 (GVDD) 由 PVDD 电压提供。应特别注意将所有去耦电容尽可能靠近相关引脚放置。通常,必须避免电源引脚和去耦电容器之间的电感。为了实现一个正常运行的自举电路,必须在每个自举引脚 (BST_x) 与功率级输出引脚 (OUT_x) 之间连接一个小型陶瓷电容器。当功率级输出为低电平时,自举电容器通过连接在栅极驱动稳压器输出引脚 (GVDD) 和自举引脚之间的内部二极管进行充电。当功率级输出为高电平时,自举电容器电势将移至输出电势以上,从而为高侧栅极驱动器提供合适的电压电源。