SNVA559C September   2012  – February 2019 LM2574 , LM2575-N , LM2575HV , LM2576 , LM2576HV , LM2577

 

  1.   Switching regulator fundamentals
    1.     Trademarks
    2. 1 Switching Fundamentals
      1. 1.1 The Law of Inductance
      2. 1.2 Transformer Operation
      3. 1.3 Pulse Width Modulation (PWM)
    3. 2 Switching Converter Topologies
      1. 2.1  Buck Regulator
      2. 2.2  Continuous vs Discontinuous Operation
      3. 2.3  Boost Regulator
      4. 2.4  Output Current and Load Power
      5. 2.5  Buck-Boost (Inverting) Regulator
      6. 2.6  Flyback Regulator
      7. 2.7  Generating Multiple Outputs
      8. 2.8  Push-Pull Converter
      9. 2.9  Half-Bridge Converter
      10. 2.10 Full-Bridge Converter
    4. 3 Application Hints for Switching Regulators
      1. 3.1 Capacitor Parasitics Affecting Switching Regulator Performance
        1. 3.1.1 Input Capacitors
        2. 3.1.2 Output Capacitor ESR Effects
        3. 3.1.3 Bypass Capacitors
      2. 3.2 Proper Grounding
      3. 3.3 Transformer/Inductor Cores and Radiated Noise
      4. 3.4 Measuring Output Ripple Voltage
      5. 3.5 Measuring Regulator Efficiency of DC/DC Converters
      6. 3.6 Measuring Regulator Efficiency of Offline Converters
    5. 4 Application Circuits
      1. 4.1 LM2577: A Complete Flyback/Boost Regulator IC
        1. 4.1.1 Increasing Available Load Power in an LM2577 Boost Regulator
      2. 4.2 LM2577 Negative Buck Regulator
      3. 4.3 LM2577 Three-Output, Isolated Flyback Regulator
      4. 4.4 LM2575 and LM2576 Buck Regulators
      5. 4.5 Low Dropout, High Efficiency 5-V/3-A Buck Regulator
    6. 5 References and Related Products
  2.   Revision History

Output Current and Load Power

An important design consideration in the Boost regulator is that the output load current and the switch current are not equal, and the maximum available load current is always less than the current rating of the switch transistor.

It should be noted that the maximum total power available for conversion in any regulator is equal to the input voltage multiplied times the maximum average input current (which is less than the current rating of the switch transistor).

Becuase the output voltage of the Boost is higher than the input voltage, it follows that the output current must be lower than the input current.