SNVA559C September   2012  – February 2019 LM2574 , LM2575-N , LM2575HV , LM2576 , LM2576HV , LM2577

 

  1.   Switching regulator fundamentals
    1.     Trademarks
    2. 1 Switching Fundamentals
      1. 1.1 The Law of Inductance
      2. 1.2 Transformer Operation
      3. 1.3 Pulse Width Modulation (PWM)
    3. 2 Switching Converter Topologies
      1. 2.1  Buck Regulator
      2. 2.2  Continuous vs Discontinuous Operation
      3. 2.3  Boost Regulator
      4. 2.4  Output Current and Load Power
      5. 2.5  Buck-Boost (Inverting) Regulator
      6. 2.6  Flyback Regulator
      7. 2.7  Generating Multiple Outputs
      8. 2.8  Push-Pull Converter
      9. 2.9  Half-Bridge Converter
      10. 2.10 Full-Bridge Converter
    4. 3 Application Hints for Switching Regulators
      1. 3.1 Capacitor Parasitics Affecting Switching Regulator Performance
        1. 3.1.1 Input Capacitors
        2. 3.1.2 Output Capacitor ESR Effects
        3. 3.1.3 Bypass Capacitors
      2. 3.2 Proper Grounding
      3. 3.3 Transformer/Inductor Cores and Radiated Noise
      4. 3.4 Measuring Output Ripple Voltage
      5. 3.5 Measuring Regulator Efficiency of DC/DC Converters
      6. 3.6 Measuring Regulator Efficiency of Offline Converters
    5. 4 Application Circuits
      1. 4.1 LM2577: A Complete Flyback/Boost Regulator IC
        1. 4.1.1 Increasing Available Load Power in an LM2577 Boost Regulator
      2. 4.2 LM2577 Negative Buck Regulator
      3. 4.3 LM2577 Three-Output, Isolated Flyback Regulator
      4. 4.4 LM2575 and LM2576 Buck Regulators
      5. 4.5 Low Dropout, High Efficiency 5-V/3-A Buck Regulator
    6. 5 References and Related Products
  2.   Revision History

Bypass Capacitors

High-frequency bypass capacitors are always recommended on the supply pins of IC devices, but if the devices are used in assemblies near switching converters bypass capacitors are absolutely required.

The components which perform the high-speed switching (transistors and rectifiers) generate significant EMI that easily radiates into PCB traces and wire leads.

To assure proper circuit operation, all IC supply pins must be bypassed to a clean, low-inductance ground (for details on grounding, see Section 3.2).