ZHCSNB5B June   2021  – February 2025 LM25148-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 说明(续)
  6. 可订购器件型号
  7. 引脚配置和功能
    1. 6.1 可润湿侧翼
  8. 规格
    1. 7.1 绝对最大额定值
    2. 7.2 ESD 等级 
    3. 7.3 建议运行条件
    4. 7.4 热性能信息
    5. 7.5 电气特性
    6. 7.6 典型特性
  9. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
    3. 8.3 特性说明
      1. 8.3.1  输入电压范围 (VIN)
      2. 8.3.2  高压偏置电源稳压器(VCC、VCCX、VDDA)
      3. 8.3.3  精密使能端 (EN)
      4. 8.3.4  电源正常监视器 (PG)
      5. 8.3.5  开关频率 (RT)
      6. 8.3.6  双随机展频 (DRSS)
      7. 8.3.7  软启动
      8. 8.3.8  输出电压设定值 (FB)
      9. 8.3.9  最短可控导通时间
      10. 8.3.10 误差放大器和 PWM 比较器(FB、EXTCOMP)
      11. 8.3.11 斜率补偿
      12. 8.3.12 电感器电流检测(ISNS+、VOUT)
        1. 8.3.12.1 分流电流检测
        2. 8.3.12.2 电感器 DCR 电流检测
      13. 8.3.13 断续模式电流限制
      14. 8.3.14 高侧和低侧栅极驱动器(HO、LO)
      15. 8.3.15 输出配置 (CNFG)
      16. 8.3.16 单输出双相运行
    4. 8.4 器件功能模式
      1. 8.4.1 睡眠模式
      2. 8.4.2 脉冲频率调制和同步 (PFM/SYNC)
      3. 8.4.3 热关断
  10. 应用和实施
    1. 9.1 应用信息
      1. 9.1.1 动力总成元件
        1. 9.1.1.1 降压电感器
        2. 9.1.1.2 输出电容器
        3. 9.1.1.3 输入电容器
        4. 9.1.1.4 功率 MOSFET
        5. 9.1.1.5 EMI 滤波器
      2. 9.1.2 误差放大器和补偿
    2. 9.2 典型应用
      1. 9.2.1 设计 1 - 高效率 2.1MHz 同步降压稳压器
        1. 9.2.1.1 设计要求
        2. 9.2.1.2 详细设计过程
          1. 9.2.1.2.1 使用 WEBENCH® 工具创建定制设计方案
          2. 9.2.1.2.2 降压电感器
          3. 9.2.1.2.3 电流检测电阻
          4. 9.2.1.2.4 输出电容器
          5. 9.2.1.2.5 输入电容器
          6. 9.2.1.2.6 频率设置电阻器
          7. 9.2.1.2.7 反馈电阻器
          8. 9.2.1.2.8 补偿器件
        3. 9.2.1.3 应用曲线
      2. 9.2.2 设计 2 – 高效 440-kHz 同步降压稳压器
        1. 9.2.2.1 设计要求
        2. 9.2.2.2 详细设计过程
        3. 9.2.2.3 应用曲线
      3. 9.2.3 设计 3 – 双相 400kHz 20A 同步降压稳压器
        1. 9.2.3.1 设计要求
        2. 9.2.3.2 详细设计过程
        3. 9.2.3.3 应用曲线
    3. 9.3 电源相关建议
    4. 9.4 布局
      1. 9.4.1 布局指南
        1. 9.4.1.1 功率级布局
        2. 9.4.1.2 栅极驱动布局
        3. 9.4.1.3 PWM 控制器布局
        4. 9.4.1.4 热设计和布局
        5. 9.4.1.5 接地平面设计
      2. 9.4.2 布局示例
  11. 10器件和文档支持
    1. 10.1 器件支持
      1. 10.1.1 开发支持
        1. 10.1.1.1 使用 WEBENCH® 工具创建定制设计方案
    2. 10.2 文档支持
      1. 10.2.1 相关文档
        1. 10.2.1.1 PCB 布局资源
        2. 10.2.1.2 热设计资源
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 商标
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

输入电压范围 (VIN)

LM25148-Q1 工作输入电压范围为 3.5V 至 42V。该器件用于 12V、24V 和 48V 电源轨中的降压转换。图 9-4 中的应用电路展示了实现基于 LM25148-Q1 且采用单电源的宽 VIN 单输出降压稳压器所需的所有元件。LM25148-Q1 使用内部 LDO 来为栅极驱动和控制电路提供 5V VCC 偏置电压轨(假定输入电压高于 5V 以及必要的子稳压器压降规格)。

在高输入电压应用中,请格外注意,确保 VIN 和 SW 引脚在线路或负载瞬态事件下不超过 47V 的绝对最大额定电压。如果电压偏移超过适用的电压规格,则可能会损坏器件。

在具有快速输入瞬变的应用中必须小心,这些瞬变会导致 VIN 处的电压突然下降到低于 VOUT 设定点 2V 以上。LM25148-Q1 在 VOUT 和 VIN 引脚之间具有一个内部 ESD 二极管,这个二极管可以在上述情况下导通,从而导致输出放电。为了防止在上述条件下损坏内部 ESD 二极管,TI 建议在 LM25148-Q1 的 VIN 引脚串联一个肖特基二极管,以防止反向电流从 VOUT 流向 VIN。

当 VIN 接近 VOUT 时,LM25148-Q1 会跳过 tOFF 周期以允许控制器将占空比扩展至大约 99%。请参阅 图 8-1

使用以下公式来计算 LM25148-Q1 进入压降模式的时间。

方程式 1. V I N = V O U T ×   t P t P   -   t O F F
  • tP 是振荡器周期
  • tOFF 是最短关断时间,典型值是 90ns
LM25148-Q1 压降模式运行图 8-1 压降模式运行