ZHCSHC3B january   2018  – june 2023 TPS61280D , TPS61280E , TPS61281D

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. 说明(续)
  7. Device Comparison Table
  8. Pin Configuration and Functions
  9. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 I2C Interface Timing Characteristics #GUID-BD85FD7C-B9AF-4F5D-9DFF-CD61365A592A/SLVS5401494
    7. 8.7 I2C Timing Diagrams
    8. 8.8 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Voltage Scaling Management (VSEL)
      2. 9.3.2 Spread Spectrum, PWM Frequency Dithering
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-Save Mode
      2. 9.4.2 Pass-Through Mode
      3. 9.4.3 Mode Selection
      4. 9.4.4 Current Limit Operation
      5. 9.4.5 Start-Up and Shutdown Mode
      6. 9.4.6 Undervoltage Lockout
      7. 9.4.7 Thermal Shutdown
      8. 9.4.8 Fault State and Power-Good
    5. 9.5 Programming
      1. 9.5.1 Serial Interface Description (TPS61280D/E)
      2. 9.5.2 Standard-, Fast-, Fast-Mode Plus Protocol
      3. 9.5.3 HS-Mode Protocol
      4. 9.5.4 TPS6128xD/E I2C Update Sequence
    6. 9.6 Register Maps
      1. 9.6.1  Slave Address Byte
      2. 9.6.2  Register Address Byte
      3. 9.6.3  I2C Registers, E2PROM, Write Protect
      4. 9.6.4  E2PROM Configuration Parameters
      5. 9.6.5  CONFIG Register [reset = 0x01]
      6. 9.6.6  VOUTFLOORSET Register [reset = 0x02]
      7. 9.6.7  VOUTROOFSET Register [reset = 0x03]
      8. 9.6.8  ILIMSET Register [reset = 0x04]
      9. 9.6.9  Status Register [reset = 0x05]
      10. 9.6.10 E2PROMCTRL Register [reset = 0xFF]
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 TPS61281D with 2.5V-4.35 VIN, 1500 mA Output Current (TPS61280D with default I2C Configuration)
        1. 10.2.1.1 Design Requirement
        2. 10.2.1.2 Detailed Design Parameters
          1. 10.2.1.2.1 Inductor Selection
          2. 10.2.1.2.2 Output Capacitor
          3. 10.2.1.2.3 Input Capacitor
          4. 10.2.1.2.4 Checking Loop Stability
        3. 10.2.1.3 Application Performance Curves
      2. 10.2.2 TPS61282D with 2.5V-4.35 VIN, 2000 mA Output Current (TPS61280D with I2C Programmable)
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedures
        3. 10.2.2.3 Application Performance Curves
  12. 11Power Supply Recommendations
  13. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Information
  14. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 第三方产品免责声明
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 Trademarks
    5. 13.5 静电放电警告
    6. 13.6 术语表
  15. 14Mechanical, Packaging, and Orderable Information
    1. 14.1 Package Summary

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Fault State and Power-Good

The TPS6128xD/E enters the fault state under any of the followings conditions:

  • The output voltage fails to achieve the required level during a start-up phase.
  • The output voltage falls out of regulation (in pre-charge mode).
  • The device has entered thermal shutdown.

Once a fault is triggered, the regulator stops operating and disconnects the load. After waiting 1ms, the device attempts to restart. The TPS61280D device can be configured to signal a fault condition by pulling the open-drain GPIO pin (nFAULT) low for a short period of time. The nFAULT output provides a falling edge triggered interrupt signal to the host. To ensure proper operation, the GPIO port needs to be pull high quick enough, that is, faster than ca. 200ns. To do so, it is recommended to use a GPIO pull-up resistor in the range of 1kΩ to 10kΩ.

The TPS6128xD/E (simple logic I/F version) device only provide a power-good output (PG) for signaling the system when the regulator has successfully completed start-up and no faults have occurred. Power-good also functions as an early warning flag for excessive die temperature and overload conditions.

  • PG is asserted high when the start-up sequence is successfully completed.
  • PG is pulled low when the output voltage falls approximately 10% below its regulation level or the die temperature exceeds 115°C. PG is re-asserted high when the device cools below ca. 100°C.
  • Any fault condition causes PG to be de-asserted.
  • PG is pulled high when the device is operating in forced pass-through mode (that is, nBYP = L).
  • PG is pulled high when the device is in shutdown mode.