ZHCU929 December   2022

 

  1.   说明
  2.   资源
  3.   特性
  4.   应用
  5.   5
  6. 1系统说明
    1. 1.1 关键系统规格
  7. 2系统概述
    1. 2.1 方框图
    2. 2.2 系统设计原理
      1. 2.2.1 检测原理
      2. 2.2.2 饱和区
      3. 2.2.3 常规工作模式
    3. 2.3 重点产品
      1. 2.3.1 DRV8220
      2. 2.3.2 OPAx202
      3. 2.3.3 TLVx172
      4. 2.3.4 TLV7011
      5. 2.3.5 INA293
      6. 2.3.6 SN74LVC1G74
      7. 2.3.7 TLV767
  8. 3硬件、软件、测试要求和测试结果
    1. 3.1 硬件
      1. 3.1.1  电路板概述
      2. 3.1.2  滤波器级
      3. 3.1.3  差分至单端转换器
      4. 3.1.4  低通滤波器
      5. 3.1.5  全波整流器
      6. 3.1.6  直流偏移电路
      7. 3.1.7  自振电路
        1.       31
      8. 3.1.8  DRV8220 H 桥
      9. 3.1.9  饱和检测电路
      10. 3.1.10 由 DFF 控制的 H 桥
      11. 3.1.11 MCU 选择
      12. 3.1.12 放弃计时器采集
      13. 3.1.13 区分同一信号的直流和交流
      14. 3.1.14 磁通门传感器
    2. 3.2 软件要求
      1. 3.2.1 故障检测软件说明
    3. 3.3 测试设置
      1. 3.3.1 接地故障模拟
    4. 3.4 测试结果
      1. 3.4.1 温度范围内的线性度
    5. 3.5 故障响应结果
  9. 4设计和文档支持
    1. 4.1 设计文件
      1. 4.1.1 原理图
      2. 4.1.2 物料清单
    2. 4.2 文档支持
    3. 4.3 支持资源
    4. 4.4 商标
  10. 5作者简介

常规工作模式

流经导线的电流会产生磁场。在检测原理部分中进行了说明,接地故障会产生磁场。磁通门负载电阻器上的平均电压与接地故障磁场成正比。该平均电压经过滤波和读取,来确定是否存在接地故障。

磁芯由驱动器电路驱动至饱和状态。一旦达到饱和,驱动电路就会切换电流方向,直到磁芯再次达到饱和。每次磁芯达到饱和时,驱动电路都会不断地切换驱动电流方向。在饱和之前,由于高磁导率,环境磁场通过磁芯,从而产生高通量。在饱和点,磁芯磁导率下降到真空。在激励驱动电流的下半个周期内,磁芯从饱和状态恢复,并且由于环境磁场产生的磁通再次处于高电平,直到磁芯反方向饱和;然后重复该周期。