ZHCU837 December   2021

 

  1.   说明
  2.   资源
  3.   特性
  4.   应用
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
      1.      10
    2. 2.2 Highlighted Products
      1. 2.2.1 DRV5056
      2. 2.2.2 DRV5032
      3. 2.2.3 TPS709
      4. 2.2.4 SN74HCS00
      5. 2.2.5 TPS22917
      6. 2.2.6 SN74AUP1G00
      7. 2.2.7 TLV9061
    3. 2.3 Design Considerations
      1. 2.3.1 Design Hardware Implementation
        1. 2.3.1.1 Hall-Effect Switches
          1. 2.3.1.1.1 U1 Wake-Up Sensor Configuration
          2. 2.3.1.1.2 U2 Stray-Field Sensor Configuration
          3. 2.3.1.1.3 U3 and U4 Tamper Sensor Configuration
          4. 2.3.1.1.4 Hall Switch Placement
            1. 2.3.1.1.4.1 Placement of U1 and U2 Sensors
              1. 2.3.1.1.4.1.1 U1 and U2 Magnetic Flux Density Estimation Results
            2. 2.3.1.1.4.2 Placement of U3 and U4 Hall Switches
              1. 2.3.1.1.4.2.1 U3 and U4 Magnetic Flux Density Estimation Results
          5. 2.3.1.1.5 Using Logic Gates to Combine Outputs from Hall-Effect Switches
        2. 2.3.1.2 Linear Hall-Effect Sensor Output
          1. 2.3.1.2.1 DRV5056 Power
          2. 2.3.1.2.2 DRV5056 Output Voltage
          3. 2.3.1.2.3 DRV5056 Placement
        3. 2.3.1.3 Power Supply
        4. 2.3.1.4 Transistor Circuit for Creating High-Voltage Enable Signal
      2. 2.3.2 Alternative Implementations
        1. 2.3.2.1 Replacing 20-Hz Tamper Switches With 5-Hz Tamper Switches
        2. 2.3.2.2 Using Shielding to Replace Tamper Switches and Stray Field Switch
        3. 2.3.2.3 Replacing Hall-Based Wake-Up Alert Function With a Mechanical Switch
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Installation and Demonstration Instructions
      2. 3.1.2 Test Points and LEDs
      3. 3.1.3 Configuration Options
        1. 3.1.3.1 Disabling Hall-Effect Switches
        2. 3.1.3.2 Configuring Hardware for Standalone Mode or Connection to External Systems
    2. 3.2 Test Setup
      1. 3.2.1 Output Voltage Accuracy Testing
      2. 3.2.2 Magnetic Tampering Testing
      3. 3.2.3 Current Consumption Testing
    3. 3.3 Test Results
      1. 3.3.1 Output Voltage Accuracy Pre-Calibration Results
      2. 3.3.2 Output Voltage Accuracy Post-Calibration Results
      3. 3.3.3 Magnetic Tampering Results
      4. 3.3.4 Current Consumption Results
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 支持资源
    5. 4.5 Trademarks
U3 and U4 Tamper Sensor Configuration

Switches U3 and U4 are the optional tamper sensors. To disable switch U3, depopulate resistor R20 and place a 0-Ω resistor between pads 1 and 2 of the R18 3-pad footprint. Switch U4 can also be disabled by depopulating resistor R19 and placing a 0-Ω resistor between pads 1 and 2 of the R17 3-pad footprint. U3 and U4 have their GND pins connected to the GND of the board instead of an output of a Hall sensor, so they are always powered as long as resistors R19 and R20 are populated. Both of these devices use the DRV5032FA SOT-23 package and respond to both positive and negative magnetic flux density readings. The output of these devices is assured to be asserted low when the absolute value of the sensed magnetic flux density is greater than 4.8 mT and asserted high when the absolute value of the sensed magnetic flux density is less than 0.5 mT.

Switches U3 and U4 are for making the design robust against the magnet orientation shown in Figure 2-12. In this orientation, U1 detects a strong positive field and U2 detects a strong negative field, thereby triggering the wake-up sensor and stray field sensor. Switches U3 and U4 can detect the strong magnetic field from this orientation and put the system in sleep mode. These switches are spread out from each other to cover a wider sensing range. U3 and U4 are also placed so that the sensed magnetic flux density from the trigger magnet is small enough to not be misinterpreted as an external magnetic field.

GUID-20211209-SS0I-XM2Q-SKCD-MSVKJW0N8SS7-low.png Figure 2-12 Additional Magnet Orientation Detected by Tamper Hall Sensors