ZHCSS31 september   2020 TSB41BA3F-EP

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Terminal Configuration and Functions
    1.     Terminal Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics - Driver
    6. 6.6 Electrical Characteristics - Receiver
    7. 6.7 Electrical Characteristics - Device
    8. 6.8 Switching Characteristics
  8. Operating Life Deration
  9. Parameter Measurement Information
  10. Overview
  11. 10Functional Block Diagram
  12. 11Principles Of Operation (1394b Interface)
    1. 11.1 LLC Service Request
    2. 11.2 Status Transfer
    3. 11.3 Receive
    4. 11.4 Transmit
  13. 12Principles Of Operation (1394a-2000 Interface)
    1. 12.1 LLC Service Request
    2. 12.2 Status Transfer
    3. 12.3 Receive
    4. 12.4 Transmit
    5. 12.5 Interface Reset and Disable
  14. 13Applications, Implementation, and Layout
    1. 13.1 Known exceptions to functional specification (errata).
      1. 13.1.1 Errata # 1:Restore from Leaf Node (Nephew)
        1. 13.1.1.1 Detailed Description
        2. 13.1.1.2 Background
        3. 13.1.1.3 Workaround Proposal
        4. 13.1.1.4 Corrective Action
    2. 13.2 Application Information
      1. 13.2.1 Interoperability with earlier revisions of TSB41BA3
      2. 13.2.2 Internal Register Configuration
      3. 13.2.3 Feature Enhancements to revision F
        1. 13.2.3.1 Detect Loss of Descrambler Synchronization
          1. 13.2.3.1.1 Detect Loss of Descrambler Synchronization Advantages and Uses
        2. 13.2.3.2 Fast Retrain
          1. 13.2.3.2.1 Fast-Retrain Advantages and Uses
          2. 13.2.3.2.2 Fast-Retrain Backward Compatibility
        3. 13.2.3.3 Fast Power-On Re-connect
          1. 13.2.3.3.1 Fast Power-On Re-Connect Advantages and Uses
          2. 13.2.3.3.2 Fast Power-On Re-Connect Backward Compatibility
        4. 13.2.3.4 Fast Connection Tone Debounce
        5. 13.2.3.5 Programmable invalidCount
      4. 13.2.4 Power-Class Programming
      5. 13.2.5 Using The TSB41BA3F-EP With A 1394-1995 Or 1394a-2000 Link Layer
      6. 13.2.6 Power-Up Reset
      7. 13.2.7 Crystal Selection
      8. 13.2.8 Bus Reset
      9. 13.2.9 Designing With Powerpad™ Devices
  15. 14Device and Documentation Support
    1. 14.1 Tools and Software
    2. 14.2 Device Nomenclature
    3. 14.3 Documentation Support
    4. 14.4 支持资源
    5. 14.5 Trademarks
    6. 14.6 静电放电警告
    7. 14.7 术语表
  16. 15Mechanical, Packaging, and Orderable Information
    1. 15.1 Packaging Information
    2. 15.2 Mechanical Data

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Designing With Powerpad™ Devices

The TSB41BA3F-EP is housed in a high-performance, thermally enhanced, 80-terminal PFP PowerPAD package. Use of the PowerPAD package does not require any special considerations except to note that the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. Therefore, if not implementing PowerPAD PCB features, the use of solder masks (or other assembly techniques) might be required to prevent any inadvertent shorting by the exposed thermal pad of connection etches or vias under the package. The recommended option, however, is to not run any etches or signal vias under the device, but to have only a grounded thermal land as explained In the following paragraphs. Although the actual size of the exposed die pad can vary, the maximum size required for the keepout area for the 80-terminal PFP PowerPAD package is 10 mm × 10 mm. The actual thermal pad size for the TSB41BA3F-EP is 6 mm × 6 mm.

It is required that there be a thermal land, which is an area of solder-tinned-copper, underneath the PowerPAD package. The thermal land varies in size, depending on the PowerPAD package being used, the PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land might or might not contain numerous thermal vias depending on PCB construction.

Other requirements for thermal lands and thermal vias are detailed in the Texas Instruments PowerPADThermally Enhanced Package application report (SLMA002) available via the Texas Instruments Web pages at URL http://www.ti.com.

GUID-B035C35E-0117-4EAB-80D9-9361DF3D5EAE-low.gifFigure 13-10 Example of a Thermal Land for the TSB41BA3F-EP PHY

For the TSB41BA3F-EP, this thermal land must be grounded to the low-impedance ground plane of the device. This improves not only thermal performance but also the electrical grounding of the device. It is also recommended that the device ground terminal landing pads be connected directly to the grounded thermal land. The land size ought to be as large as possible without shorting the device signal terminals. The thermal land can be soldered to the exposed thermal pad using standard reflow soldering techniques.

Although the thermal land can be electrically floated and configured to remove heat to an external heat sink, it is recommended that the thermal land be connected to the low-impedance ground plane for the device. More information can be obtained from the Texas Instruments application report PHY Layout (SLLA020).