ZHCSLS8 August   2020 DRV5825P

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
      1. 6.7.1 Bridge Tied Load (BTL) Configuration
      2. 6.7.2 Parallel Bridge Tied Load (PBTL) Configuration
  7. Typical Characteristics
    1. 7.1 Bridge Tied Load (BTL) Configuration
    2. 7.2 Parallel Bridge Tied Load (PBTL) Configuration
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power Supplies
      2. 8.3.2 Device Clocking
      3. 8.3.3 Serial Audio Port – Clock Rates
      4. 8.3.4 Clock Halt Auto-recovery
      5. 8.3.5 Sample Rate on the Fly Change
      6. 8.3.6 Serial Audio Port - Data Formats and Bit Depths
      7. 8.3.7 Digital Audio Processing
      8. 8.3.8 Class D Audio Amplifier
        1. 8.3.8.1 Speaker Amplifier Gain Select
        2. 8.3.8.2 Class D Loop Bandwidth and Switching Frequency Setting
    4. 8.4 Device Functional Modes
      1. 8.4.1 Software Control
      2. 8.4.2 Speaker Amplifier Operating Modes
        1. 8.4.2.1 BTL Mode
        2. 8.4.2.2 PBTL Mode
      3. 8.4.3 Low EMI Modes
        1. 8.4.3.1 Spread Spectrum
        2. 8.4.3.2 Channel to Channel Phase Shift
        3. 8.4.3.3 Multi-Devices PWM Phase Synchronization
          1. 8.4.3.3.1 Phase Synchronization With I2S Clock In Startup Phase
          2. 8.4.3.3.2 Phase Synchronization With GPIO
      4. 8.4.4 Device State Control
      5. 8.4.5 Device Modulation
    5. 8.5 Programming and Control
      1. 8.5.1 I2C Serial Communication Bus
      2. 8.5.2 I2C Slave Address
        1. 8.5.2.1 Random Write
        2. 8.5.2.2 Sequential Write
        3. 8.5.2.3 Random Read
        4. 8.5.2.4 Sequential Read
        5. 8.5.2.5 DSP Memory Book, Page and BQ update
        6. 8.5.2.6 Checksum
          1. 8.5.2.6.1 Cyclic Redundancy Check (CRC) Checksum
          2. 8.5.2.6.2 Exclusive or (XOR) Checksum
      3. 8.5.3 Control via Software
        1. 8.5.3.1 Startup Procedures
        2. 8.5.3.2 Shutdown Procedures
        3. 8.5.3.3 Protection and Monitoring
          1. 8.5.3.3.1 Overcurrent Limit (Cycle-By-Cycle)
          2. 8.5.3.3.2 Overcurrent Shutdown (OCSD)
          3. 8.5.3.3.3 DC Detect
    6. 8.6 Register Maps
      1. 8.6.1 CONTROL PORT Registers
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 LC Filter Design For Piezo Speaker Driving
        1. 9.1.1.1 LC Filter Recommendation
      2. 9.1.2 Bootstrap Capacitors
      3. 9.1.3 Power Supply Decoupling
      4. 9.1.4 Output EMI Filtering
    2. 9.2 Typical Applications
      1. 9.2.1 2.0 (Stereo BTL) System
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design procedures
        1. 9.2.3.1 Step One: Hardware Integration
        2. 9.2.3.2 Step Two: Hardware Integration
        3. 9.2.3.3 Step Three: Software Integration
      4. 9.2.4 MONO (PBTL) Systems
  10. 10Power Supply Recommendations
    1. 10.1 DVDD Supply
    2. 10.2 PVDD Supply
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 General Guidelines for Audio Amplifiers
      2. 11.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 11.1.3 Optimizing Thermal Performance
        1. 11.1.3.1 Device, Copper, and Component Layout
        2. 11.1.3.2 Stencil Pattern
          1. 11.1.3.2.1 PCB footprint and Via Arrangement
          2. 11.1.3.2.2 Solder Stencil
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Pin Functions

PIN TYPE(1) DESCRIPTION
NAME NO.
DGND 5 P Digital ground
DVDD 6 P 3.3-V or 1.8-V digital power supply
VR_DIG 7 P Internally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices
ADR 8 AI A table of resistor value (Pull down to GND) will decide device I2C address. See Table 8-5.
GPIO0 9 DI/O General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and 0x61h). Can be configured to be CMOS output or Open drain output (WARNZ or FAULTZ)
GPIO1 10 DI/O General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and 0x62h). Can be configured to be CMOS output or Open drain output (WARNZ or FAULTZ)
GPIO2 11 DI/O General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and 0x63h). Can be configured to be CMOS output or Open drain output (WARNZ or FAULTZ)
LRCLK 12 DI Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ and RJ, this corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync boundary.
SCLK(2) 13 DI Bit clock for the digital signal that is active on the input data line of the serial data port. Sometimes, this pin also be written as "bit clock (BCLK)"
SDIN 14 DI Data line to the serial data port
SDA 15 DI/O I2C serial control data interface input/output
SCL 16 DI I2C serial control clock input
PDN 17 DI Power down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators.
GVDD 18 P Gate drive internal regulator output. This pin must not be used to drive external devices
AVDD 19 P Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices
AGND 20 P Analog ground
PVDD 3 P PVDD voltage input
4 P
21 P
22 P
PGND 25 P Ground reference for power device circuitry. Connect this pin to system ground.
26 P
31 P
32 P
OUT_B+ 23 O Positive pin for differential speaker amplifier output B
BST_B+ 24 P Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_B+
OUT_B- 27 O Negative pin for differential speaker amplifier output B
BST_B- 28 P Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_B-
BST_A- 29 P Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_A-
OUT_A- 30 O Negative pin for differential speaker amplifier output A
BST_A+ 1 P Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side gate drive for OUT_A+
OUT_A+ 2 O Positive pin for differential speaker amplifier output A
PowerPAD™ P Connect to the system Ground
AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P = Power, G = Ground (0 V)
Typically written "bit clock (BCLK)" in some audio codecs.