ZHCSXP9A March   2020  – January 2025 BQ24800

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
    7. 5.7 典型特性
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1 器件上电
        1. 6.3.1.1 仅电池
        2. 6.3.1.2 适配器检测和 ACOK 输出
          1. 6.3.1.2.1 适配器过压 (ACOV)
        3. 6.3.1.3 REGN LDO
      2. 6.3.2 系统电源选择
      3. 6.3.3 电流和功率监控器
        1. 6.3.3.1 高精确度电流检测放大器(IADP 和 IDCHG)
        2. 6.3.3.2 高精度功率检测放大器 (PMON)
      4. 6.3.4 CPU 节流的处理器热量指示
      5. 6.3.5 输入电流动态电源管理
        1. 6.3.5.1 设置输入电流限制
      6. 6.3.6 两级适配器电流限制(峰值功率模式)
      7. 6.3.7 EMI 开关频率调节
      8. 6.3.8 器件保护功能
        1. 6.3.8.1 充电器超时
        2. 6.3.8.2 输入过流保护 (ACOC)
        3. 6.3.8.3 充电过流保护 (CHG_OCP)
        4. 6.3.8.4 电池过压保护 (BATOVP)
        5. 6.3.8.5 电池短路
        6. 6.3.8.6 热关断保护 (TSHUT)
        7. 6.3.8.7 电感器短路,MOSFET 短路保护
    4. 6.4 器件功能模式
      1. 6.4.1 降压模式下的电池充电
        1. 6.4.1.1 设置充电电流
        2. 6.4.1.2 设置充电电压
        3. 6.4.1.3 自动内部软启动充电器电流
      2. 6.4.2 混合动力升压模式
      3. 6.4.3 仅电池升压模式
        1. 6.4.3.1 在仅电池升压模式下设置最小系统电压
      4. 6.4.4 混合升压模式和仅电池升压模式下的电池放电电流调节
      5. 6.4.5 电池 LEARN 周期
      6. 6.4.6 转换器工作模式
        1. 6.4.6.1 连续导通模式 (CCM)
        2. 6.4.6.2 不连续导通模式 (DCM)
        3. 6.4.6.3 非同步模式和轻负载比较器
    5. 6.5 编程
      1. 6.5.1 SMBus 接口
        1. 6.5.1.1 SMBus 写入字和读取字协议
        2. 6.5.1.2 时序图
    6. 6.6 寄存器映射
      1. 6.6.1  电池充电器命令
      2. 6.6.2  设置充电器选项
        1. 6.6.2.1 ChargeOption0 寄存器
      3. 6.6.3  ChargeOption1 寄存器
      4. 6.6.4  ChargeOption2 寄存器
      5. 6.6.5  ChargeOption3 寄存器
      6. 6.6.6  ProchotOption0 寄存器
      7. 6.6.7  ProchotOption1 寄存器
      8. 6.6.8  ProchotStatus 寄存器
      9. 6.6.9  充电电流寄存器
      10. 6.6.10 充电电压寄存器
      11. 6.6.11 放电电流寄存器
      12. 6.6.12 最小系统电压寄存器
      13. 6.6.13 输入电流寄存器
      14. 6.6.14 寄存器异常
  8. 应用和实施
    1. 7.1 应用信息
    2. 7.2 典型应用
      1. 7.2.1 典型系统原理图
        1. 7.2.1.1 设计要求
        2. 7.2.1.2 详细设计过程
          1. 7.2.1.2.1  适配器电流检测滤波器
          2. 7.2.1.2.2  负极输出电压保护
          3. 7.2.1.2.3  反向输入电压保护
          4. 7.2.1.2.4  降低电池静态电流
          5. 7.2.1.2.5  CIN 电容
          6. 7.2.1.2.6  L1 电感器选择
          7. 7.2.1.2.7  CBATT 电容
          8. 7.2.1.2.8  降压充电内部补偿
          9. 7.2.1.2.9  CSYS 电容
          10. 7.2.1.2.10 仅电池升压内部补偿
          11. 7.2.1.2.11 功率 MOSFET 选择
          12. 7.2.1.2.12 输入滤波器设计
        3. 7.2.1.3 应用曲线
      2. 7.2.2 从以前的器件迁移(不支持仅电池升压)
        1. 7.2.2.1 设计要求
        2. 7.2.2.2 详细设计过程
          1. 7.2.2.2.1 CSYS 电容
        3. 7.2.2.3 应用曲线
  9. 电源相关建议
  10. 布局
    1. 9.1 布局指南
    2. 9.2 布局示例
      1. 9.2.1 电流路径的布局注意事项
      2. 9.2.2 短路保护的布局注意事项
      3. 9.2.3 短路保护的布局注意事项
  11. 10器件和文档支持
    1. 10.1 第三方产品免责声明
    2. 10.2 文档支持
      1. 10.2.1 相关文档
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 商标
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

概述

BQ24800 是一款具有电源选项的 1-4 节降压电池充电控制器,适用于空间受限的多化合物便携式应用,例如笔记本电脑和可分离式超极本。它支持 4.5V 至 24V 的宽输入源范围,并支持 1-4 节电池,提供了多用途解决方案。作为降压充电器,它要求适配器电压大于最大电池电压。

BQ24800 支持自动选择系统电源,并为适配器侧和电池侧的 n 沟道 MOSFET 提供单独的驱动器。

BQ24800 具有动态电源管理 (DPM) 功能,可限制输入功率并避免交流适配器过载。在电池充电期间,随着系统功耗的增加,充电电流将降低,以便保持总输入电流低于适配器额定值。如果系统功率需求暂时超过适配器额定值,BQ24800 支持混合动力升压模式(以前称为“涡轮升压模式”),通过开关稳压器升高电池电压以提供补充电流。

大多数适配器都能够将电流保持在其标称额定值以上的水平一毫秒甚至几十毫秒。BQ24800 具有两级输入电流 DPM,又称为峰值功率模式,允许用户扩展输入电流 DPM,以在可编程过载时间内支持更高的输入电流,然后通过将输入电流限制固定在标称额定值使适配器恢复。这样可以充分利用适配器功能来减少电池放电。

在没有适配器的情况下直接通过电池为系统供电时,电池电压可能会降至低于维持系统运行所需的水平。BQ24800 提供仅电池升压模式,可将系统电压升压高到电池电压以上,从而允许系统利用剩余的电池电量,以延长电池寿命。

BQ24800 使用高精度电流检测放大器密切监控系统电源 (PMON)、输入电流 (IADP) 和电池放电电流 (IDCHG)。如果电流过高、移除了适配器或电池,则系统会向 CPU 发出 PROCHOT 信号,使 CPU 根据系统的可用功率优化其性能。

SMBus 通过高分辨率、高精度调节限制来控制输入电流、充电电流和充电电压寄存器。它还设置 PROCHOT 时序和阈值曲线来满足系统要求。