ZHCU696G September   2019  – October 2023

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 关键系统规格
  8. 2系统概览
    1. 2.1 方框图
    2. 2.2 设计注意事项
    3. 2.3 重点产品
      1. 2.3.1  LMG3422R050 - 具有集成驱动器和保护功能的 600V GaN
      2. 2.3.2  TMCS1100 - 精密隔离式电流感测监控器
      3. 2.3.3  UCC27524 - 双路 5A 高速低侧功率 MOSFET 驱动器
      4. 2.3.4  UCC27714 - 620V、1.8A、2.8A 高侧低侧栅极驱动器
      5. 2.3.5  ISO7721 - EMC 性能优异的增强型和基础型双通道高速数字隔离器
      6. 2.3.6  ISO7740 和 ISO7720 - 高速、低功耗、稳健的EMC 数字隔离器
      7. 2.3.7  OPA237 - 单电源运算放大器
      8. 2.3.8  INAx180 - 低侧和高侧电压输出,电流感测放大器
      9. 2.3.9  TPS560430 - SIMPLE SWITCHER 4V 至 36V、600mA 同步降压转换器
      10. 2.3.10 TLV713 - 适用于便携式设备且具有折返电流限制的 150mA 低压差 (LDO) 稳压器
      11. 2.3.11 TMP61 - 用于温度咸测的小型硅基线性热敏电阻
      12. 2.3.12 CSD18510Q5B - 40V、0.96mΩ、N 沟道、单路、SON5x6、NexFET MOSFET
      13. 2.3.13 UCC28911 - 具有恒压恒流和初级侧调节功能的 700V 反激式开关
      14. 2.3.14 SN74LVC1G3157DRYR - 单极双掷模拟开关
    4. 2.4 系统设计原理
      1. 2.4.1 图腾柱 PFC 级设计
        1. 2.4.1.1 PFC 级设计参数
        2. 2.4.1.2 电流计算
        3. 2.4.1.3 PFC 升压电感
        4. 2.4.1.4 输出电容器
        5. 2.4.1.5 快速开关和慢速开关
        6. 2.4.1.6 交流电流感测电路
        7. 2.4.1.7 温度感测
      2. 2.4.2 LLC 级设计参数
        1. 2.4.2.1 确定 LLC 变压器匝数比 N
        2. 2.4.2.2 确定 Mg_min 和 Mg_max
        3. 2.4.2.3 确定谐振网络的等效负载电阻 (Re)
        4. 2.4.2.4 选择 Lm 和 Lr 之比 (Ln) 以及 Qe
        5. 2.4.2.5 确定初级侧电流
        6. 2.4.2.6 确定次级侧电流
        7. 2.4.2.7 初级侧 GaN 和驱动器
        8. 2.4.2.8 次级侧同步 MOSFET
        9. 2.4.2.9 输出电流感测
      3. 2.4.3 初级侧和次级侧之间的通信
  9. 3硬件、软件、测试要求和测试结果
    1. 3.1 所需的硬件和软件
      1. 3.1.1 硬件
        1. 3.1.1.1 测试条件
        2. 3.1.1.2 电路板验证所需的测试设备
        3. 3.1.1.3 测试步骤
          1. 3.1.1.3.1 系统测试:双级
          2. 3.1.1.3.2 PFC 级测试
          3. 3.1.1.3.3 LLC 级测试
      2. 3.1.2 PFC 级软件
        1. 3.1.2.1 打开 CCS 内的项目
        2. 3.1.2.2 工程结构
        3. 3.1.2.3 基于 C2000 MCU 使用 CLA 来减轻 CPU 负载
        4. 3.1.2.4 CPU 利用率及内存分配
        5. 3.1.2.5 运行项目
          1. 3.1.2.5.1 实验 1:开环,直流(PFC 模式)
            1. 3.1.2.5.1.1 设置实验 1 的软件选项
            2. 3.1.2.5.1.2 构建和加载项目
            3. 3.1.2.5.1.3 设置调试环境窗口
            4. 3.1.2.5.1.4 使用实时仿真
            5. 3.1.2.5.1.5 运行代码
          2. 3.1.2.5.2 实验 2:闭合电流环路,直流
            1. 3.1.2.5.2.1 设置实验 2 的软件选项
            2. 3.1.2.5.2.2 构建和加载项目以及设置调试
            3. 3.1.2.5.2.3 运行代码
          3. 3.1.2.5.3 实验 3:闭合电流环路,交流 (PFC)
            1. 3.1.2.5.3.1 设置实验 3 的软件选项
            2. 3.1.2.5.3.2 构建和加载项目以及设置调试
            3. 3.1.2.5.3.3 运行代码
          4. 3.1.2.5.4 实验 4:闭合电压和电流环路 (PFC)
            1. 3.1.2.5.4.1 设置实验 4 的软件选项
            2. 3.1.2.5.4.2 构建和加载项目以及设置调试
            3. 3.1.2.5.4.3 运行代码
      3. 3.1.3 LLC 级软件
        1. 3.1.3.1 打开 CCS 内的工程
        2. 3.1.3.2 工程项目
        3. 3.1.3.3 软件流程
        4. 3.1.3.4 CPU 利用率及内存分配
        5. 3.1.3.5 运行项目
          1. 3.1.3.5.1 实验 1:开环控制
            1. 3.1.3.5.1.1 软件设置
            2. 3.1.3.5.1.2 构建和加载项目
            3. 3.1.3.5.1.3 调试环境窗口
            4. 3.1.3.5.1.4 运行代码
          2. 3.1.3.5.2 实验 2:使用 SFRA 的闭环控制
            1. 3.1.3.5.2.1 软件设置
            2. 3.1.3.5.2.2 构建和加载项目
            3. 3.1.3.5.2.3 调试环境窗口
            4. 3.1.3.5.2.4 运行代码
      4. 3.1.4 PFC + LLC 级双测试
        1. 3.1.4.1 硬件设置
        2. 3.1.4.2 系统测试步骤
        3. 3.1.4.3 TIDA-010062 中的 FSI 软件
      5. 3.1.5 实时固件更新概述
        1. 3.1.5.1 实时固件更新说明
        2. 3.1.5.2 软件结构
        3. 3.1.5.3 LLC 级软件上的 LFU
          1. 3.1.5.3.1 在 CCS 内打开工程
        4. 3.1.5.4 使用 CCS 将自定义引导加载程序和应用程序加载到闪存
        5. 3.1.5.5 在 CLA 上运行控制环路的 LFU 演示和测试结果
    2. 3.2 测试和结果
      1. 3.2.1 性能、数据和曲线
        1. 3.2.1.1 PFC 级的效率、iTHD 和 PF
        2. 3.2.1.2 LLC 级的效率
        3. 3.2.1.3 整个系统的效率
      2. 3.2.2 函数波形
        1. 3.2.2.1 启动
        2. 3.2.2.2 霍尔传感器
        3. 3.2.2.3 PFC 工作波形
        4. 3.2.2.4 LLC 工作波形
  10. 4设计文件
    1. 4.1 原理图
    2. 4.2 物料清单
    3. 4.3 PCB 布局建议
      1. 4.3.1 功率级专用指南
      2. 4.3.2 栅极驱动器专用指南
      3. 4.3.3 布局图
    4. 4.4 Altium 项目
    5. 4.5 Gerber文件
    6. 4.6 装配图
  11. 5软件文件
  12. 6相关文档
    1. 6.1 商标
  13. 7关于作者
  14. 8修订历史记录
  15.   132

实时固件更新说明

在服务器电源、计量等应用中,系统设计为持续运行,以减少固件更新期间的停机时间。但通常在因错误修复、新增功能和/或性能改进而进行固件升级期间,系统无法提供服务,也会导致相关实体的停运。 冗余模块可以解决这个问题,但会使系统总体成本增加。还有一种备选方法是执行实时固件更新 (LFU),在系统运行期间仍可更新固件。无论器件复位与否,都可升级到新固件,但不复位时的操作更为复杂。

节 3.1.5.2节 3.1.5.5说明了如何在该参考设计中实现实时固件更新 (LFU)。该示例详细介绍了在 TMS320F28003x 上使用两个闪存组执行的无器件复位 LFU。该示例说明了 LFU 功能,其中主控制环路在 CLA 上运行,后台进程在 C28x CPU 上运行。

有关在 C2000™ 器件上实现无器件复位的 LFU 的更多细节,请参阅具有 C2000™ 实时 MCU 的实时固件更新参考设计指南。

图 3-35 所示为典型基于 LFU 的系统的方框图。


GUID-20230801-SS0I-TDPX-ZN6J-VLDQ5BQKJV4T-low.svg

图 3-35 典型基于 LFU 的系统