ZHCSHN9B February   2018  – February 2025 LMK05028

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
    1. 4.1 Device Start-Up Modes
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Diagrams
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Output Clock Test Configurations
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 ITU-T G.8262 (SyncE) Standards Compliance
    2. 7.2 Functional Block Diagrams
      1. 7.2.1 PLL Architecture Overview
      2. 7.2.2 3-Loop Mode
        1. 7.2.2.1 PLL Output Clock Phase Noise Analysis in 3-Loop Mode
      3. 7.2.3 2-Loop REF-DPLL Mode
      4. 7.2.4 2-Loop TCXO-DPLL Mode
      5. 7.2.5 PLL Configurations for Common Applications
    3. 7.3 Feature Description
      1. 7.3.1  Oscillator Input (XO_P/N)
      2. 7.3.2  TCXO/OCXO Input (TCXO_IN)
      3. 7.3.3  Reference Inputs (INx_P/N)
      4. 7.3.4  Clock Input Interfacing and Termination
      5. 7.3.5  Reference Input Mux Selection
        1. 7.3.5.1 Automatic Input Selection
        2. 7.3.5.2 Manual Input Selection
      6. 7.3.6  Hitless Switching
      7. 7.3.7  Gapped Clock Support on Reference Inputs
      8. 7.3.8  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 7.3.8.1 XO Input Monitoring
        2. 7.3.8.2 TCXO Input Monitoring
        3. 7.3.8.3 Reference Input Monitoring
          1. 7.3.8.3.1 Reference Validation Timer
          2. 7.3.8.3.2 Amplitude Monitor
          3. 7.3.8.3.3 Missing Pulse Monitor (Late Detect)
          4. 7.3.8.3.4 Runt Pulse Monitor (Early Detect)
          5. 7.3.8.3.5 Frequency Monitoring
        4. 7.3.8.4 PLL Lock Detectors
        5. 7.3.8.5 Tuning Word History
        6. 7.3.8.6 Status Outputs
        7. 7.3.8.7 Interrupt
      9. 7.3.9  PLL Channels
        1. 7.3.9.1  PLL Frequency Relationships
        2. 7.3.9.2  Analog PLL (APLL)
        3. 7.3.9.3  APLL XO Doubler
        4. 7.3.9.4  APLL Phase Frequency Detector (PFD) and Charge Pump
        5. 7.3.9.5  APLL Loop Filter
        6. 7.3.9.6  APLL Voltage Controlled Oscillator (VCO)
          1. 7.3.9.6.1 VCO Calibration
        7. 7.3.9.7  APLL VCO Post-Dividers (P1, P2)
        8. 7.3.9.8  APLL Fractional N Divider (N) With SDM
        9. 7.3.9.9  REF-DPLL Reference Divider (R)
        10. 7.3.9.10 TCXO/OCXO Input Doubler and M Divider
        11. 7.3.9.11 TCXO Mux
        12. 7.3.9.12 REF-DPLL and TCXO-DPLL Time-to-Digital Converter (TDC)
        13. 7.3.9.13 REF-DPLL and TCXO-DPLL Loop Filter
        14. 7.3.9.14 REF-DPLL and TCXO-DPLL Feedback Dividers
      10. 7.3.10 Output Clock Distribution
      11. 7.3.11 Output Channel Muxes
        1. 7.3.11.1 TCXO/Ref Bypass Mux
      12. 7.3.12 Output Dividers
      13. 7.3.13 Clock Outputs (OUTx_P/N)
        1. 7.3.13.1 AC-Differential Output (AC-DIFF)
        2. 7.3.13.2 HCSL Output
        3. 7.3.13.3 LVCMOS Output (1.8 V, 2.5 V)
        4. 7.3.13.4 Output Auto-Mute During LOL or LOS
      14. 7.3.14 Glitchless Output Clock Start-Up
      15. 7.3.15 Clock Output Interfacing and Termination
      16. 7.3.16 Output Synchronization (SYNC)
      17. 7.3.17 Zero-Delay Mode (ZDM) Configuration
      18. 7.3.18 PLL Cascading With Internal VCO Loopback
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Start-Up Modes
        1. 7.4.1.1 EEPROM Mode
        2. 7.4.1.2 ROM Mode
      2. 7.4.2 PLL Operating Modes
        1. 7.4.2.1 Free-Run Mode
        2. 7.4.2.2 Lock Acquisition
        3. 7.4.2.3 Locked Mode
        4. 7.4.2.4 Holdover Mode
      3. 7.4.3 PLL Start-Up Sequence
      4. 7.4.4 Digitally-Controlled Oscillator (DCO) Mode
        1. 7.4.4.1 DCO Frequency Step Size
        2. 7.4.4.2 DCO Direct-Write Mode
      5. 7.4.5 Zero-Delay Mode (ZDM)
      6. 7.4.6 Cascaded PLL Operation
    5. 7.5 Programming
      1. 7.5.1 Interface and Control
      2. 7.5.2 I2C Serial Interface
        1. 7.5.2.1 I2C Block Register Transfers
      3. 7.5.3 SPI Serial Interface
        1. 7.5.3.1 SPI Block Register Transfer
      4. 7.5.4 Register Map Generation
      5. 7.5.5 General Register Programming Sequence
      6. 7.5.6 EEPROM Programming Flow
        1. 7.5.6.1 EEPROM Programming Using Register Commit (Method #1)
          1. 7.5.6.1.1 Write SRAM Using Register Commit
          2. 7.5.6.1.2 Program EEPROM
        2. 7.5.6.2 EEPROM Programming Using Direct SRAM Writes (Method #2)
          1. 7.5.6.2.1 Write SRAM Using Direct Writes
      7. 7.5.7 Read SRAM
      8. 7.5.8 Read EEPROM
      9. 7.5.9 EEPROM Start-Up Mode Default Configuration
    6. 7.6 Register Maps
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Start-Up Sequence
      2. 8.1.2 Power Down (PDN) Pin
      3. 8.1.3 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 8.1.3.1 Mixing Supplies
        2. 8.1.3.2 Power-On Reset (POR) Circuit
        3. 8.1.3.3 Powering Up From a Single-Supply Rail
        4. 8.1.3.4 Power Up From Split-Supply Rails
        5. 8.1.3.5 Non-Monotonic or Slow Power-Up Supply Ramp
      4. 8.1.4 Slow or Delayed XO Start-Up
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Supply Bypassing
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Reliability
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Clock Architect
      2. 9.1.2 TICS Pro
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Pin Configuration and Functions

LMK05028 RGC Package
                    64-Pin VQFN
                    Top ViewFigure 4-1 RGC Package 64-Pin VQFN Top View
Table 4-1 Pin Functions
PINTYPE(1)DESCRIPTION
NAMENO.
POWER
GNDPADGGround / Thermal Pad.
The exposed pad must be connected to PCB ground for proper electrical and thermal performance. A 7×7 via pattern is recommended to connect the IC ground pad to the PCB ground layers.
VDD_IN03PCore Supply (3.3 V) for Reference Inputs 0 to 3.
Place a nearby 0.1-µF bypass capacitor on each pin.
VDD_IN116P
VDD_IN29P
VDD_IN34P
VDD_XO42PCore Supply (3.3 V) for XO and TCXO Inputs.
Place a nearby 0.1-µF bypass capacitor on each pin.
VDD_TCXO19P
VDD_APLL149PCore Supply (3.3 V) for PLL1, PLL2, and Digital Blocks.
Place a nearby 0.1-µF bypass capacitor on each pin.
VDD_APLL237P
VDD_DIG8P
VDDO_021POutput Supply (1.8, 2.5, or 3.3 V) for Clock Outputs 0 to 7.
Place a nearby 0.1-µF bypass capacitor on each pin.
VDDO_125P
VDDO_2330P
VDDO_4550P
VDDO_659P
VDDO_763P
CORE BLOCKS
LF147AExternal Loop Filter Capacitor for APLL1 and APLL2.
Place a nearby 0.1-µF capacitor on each pin.
LF239A
CAP_APLL148AExternal Bypass Capacitors for APLL1, APLL2, and Digital Blocks.
Place a nearby 10-µF bypass capacitor on each pin.
CAP_APLL238A
CAP_DIG7A
INPUT BLOCKS
IN0_P1IDPLL Reference Clock Inputs 0 to 3.
Each input pair can accept a differential or single-ended clock signal for synchronizing the DPLLs. Each pair has a programmable input type with internal termination to support AC- or DC-coupled clocks. A single-ended LVCMOS clock can be applied to the P input with the N input pulled down to ground. An unused input pair can be left floating. LVCMOS input mode is recommended for input frequencies less than 5 MHz.
IN0_N2I
IN1_P14I
IN1_N15I
IN2_P10I
IN2_N11I
IN3_P5I
IN3_N6I
XO_P43IXO Input.
This input pair can accept a differential or single-ended clock signal from a low-jitter local oscillator to lock the APLLs. This input has a programmable input type with internal termination to support AC- or DC-coupled clocks. A single-ended LVCMOS clock (up to 2.5 V) can be applied to the P input with the N input pulled down to ground.
XO_N44I
TCXO_IN18ITCXO Input.
This input can accept an AC-coupled sinewave, clipped-sinewave, or single-ended clock signal from a stable oscillator (TCXO/OCXO) to lock the TCXO-DPLL if used by a DPLL configuration. The input swing must be less than 1.3 Vpp before AC-coupling to the input pin, which has weak internal biasing of 0.6 V and no internal termination. Leave pin floating if unused.
OUTPUT BLOCKS
OUT0_P22OClock Outputs 0 to 3 Bank.
Each programmable output driver pair can support AC-LVDS, AC-CML, AC-LVPECL, HCSL, or 1.8/2.5-V LVCMOS clocks (one or two per pair). Unused differential outputs must be terminated if active or left floating if disabled through registers.
The OUT[0:3] bank requires at least one clock from the PLL2 domain if enabled. This bank is preferred for PLL2 clocks to minimize output crosstalk.
OUT0_N23O
OUT1_P27O
OUT1_N26O
OUT2_P31O
OUT2_N32O
OUT3_P34O
OUT3_N33O
OUT4_P51OClock Outputs 4 to 7 Bank.
Each programmable output driver pair can support AC-LVDS, AC-CML, AC-LVPECL, HCSL, or 1.8/2.5-V LVCMOS clocks (one or two per pair). Unused differential outputs must be terminated if active or left floating if disabled through registers.
The OUT[4:7] bank requires at least one clock from the PLL1 domain. This bank is preferred for PLL1 clocks to minimize output crosstalk.
OUT4_N52O
OUT5_P54O
OUT5_N53O
OUT6_P57O
OUT6_N58O
OUT7_P62O
OUT7_N61O
LOGIC CONTROL / STATUS (2)(3)
HW_SW_CTRL64IDevice Start-Up Mode Select (3-level, 1.8-V compatible).
This input selects the device start-up mode that determines the memory page used to initialize the registers, serial interface, and logic pin functions. The input level is sampled only at device power-on reset (POR).
See Table 4-2 for start-up mode descriptions and logic pin functions.
PDN46IDevice Power-Down (active low).
When PDN is pulled low, the device is in hard reset and all blocks including the serial interface are powered down. When PDN is pulled high, the device is started according to device mode selected by HW_SW_CTRL and begins normal operation with all internal circuits reset to their initial state.
SDA/SDI35I/OI2C Serial Data I/O (SDA) or SPI Serial Data Input (SDI). See Table 4-2.
The default 7-bit I2C address is 11000xxb, where the MSB bits (11000b) are initialized from on-chip EEPROM and the LSB bits (xxb) are determined by the logic input pins. When HW_SW_CTRL is 0, the LSBs are determined by the GPIO[2:1] input levels during POR. When HW_SW_CTRL is 1, the LSBs are fixed to 00b.
SCL/SCK36II2C Serial Clock Input (SCL) or SPI Serial Clock Input (SCK). See Table 4-2.
GPIO0/SYNCN45IMultifunction Inputs or Outputs.
See Table 4-2.
GPIO1/SCS24I
GPIO2/SDO60I/O
GPIO3/FINC140I
GPIO4/FDEC141I
GPIO5/FINC212I/O
GPIO6/FDEC213I/O
STATUS156I/OStatus Outputs [1:0].
Each output has programmable status signal selection, driver type (3.3-V LVCMOS or open-drain), and status polarity. Open-drain requires an external pullup resistor. Leave pin floating if unused.
STATUS055I/O
INSEL0_117IManual Reference Input Selection for DPLL1.
INSEL0_[1:0] = 00b (IN0), 01b (IN1), 10b (IN2), or 11b (IN3). Leave pin floating if unused.
INSEL0_020I
INSEL1_129IManual Reference Input Selection for DPLL2.
INSEL1_[1:0] = 00b (IN0), 01b (IN1), 10b (IN2), or 11b (IN3). Leave pin floating if unused.
INSEL1_028I
G = Ground, P = Power, I = Input, O = Output, I/O = Input or Output, A = Analog.
Internal resistors: PDN pin has 200-kΩ pullup to VDD. Each HW_SW_CTRL, GPIO, and STATUS pin has a 150-kΩ bias to VIM (approximately 0.8 V) when PDN = 0 or 400-kΩ pulldown when PDN = 1. Each INSEL pin has an 85-kΩ pullup to 1.8 V when PDN = 0 or 400-kΩ pulldown when PDN = 1.
Unless otherwise noted: Logic inputs are 2-level, 1.8-V compatible inputs. Logic outputs are 3.3-V LVCMOS levels.