ZHCACG7A september   2018  – march 2023 ADS1118 , ADS1119 , ADS1120 , ADS112C04 , ADS112U04 , ADS1146 , ADS1147 , ADS1148 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1246 , ADS1247 , ADS1248 , ADS124S06 , ADS124S08 , ADS125H02 , ADS1260 , ADS1261 , ADS1262 , ADS1263

 

  1.   热电偶测量基本指南
  2.   商标
  3. 1热电偶概述
    1. 1.1 塞贝克电压
    2. 1.2 热电偶类型
      1. 1.2.1 常见热电偶金属
      2. 1.2.2 热电偶测量灵敏度
        1. 1.2.2.1 根据温度计算热电电压
        2. 1.2.2.2 根据热电电压计算温度
      3. 1.2.3 热电偶结构
      4. 1.2.4 容差标准
    3. 1.3 热电偶测量和冷端补偿 (CJC)
    4. 1.4 设计说明
      1. 1.4.1 确定热电偶工作范围
      2. 1.4.2 偏置热电偶
      3. 1.4.3 热电偶电压测量
      4. 1.4.4 冷端补偿
      5. 1.4.5 转换为温度
      6. 1.4.6 烧毁检测
  4. 2热电偶测量电路
    1. 2.1 使用上拉和下拉偏置电阻进行热电偶测量
      1. 2.1.1 原理图
      2. 2.1.2 优缺点
      3. 2.1.3 设计说明
      4. 2.1.4 测量转换
      5. 2.1.5 通用寄存器设置
    2. 2.2 使用连接到负极引线的偏置电阻进行热电偶测量
      1. 2.2.1 原理图
      2. 2.2.2 优缺点
      3. 2.2.3 设计说明
      4. 2.2.4 测量转换
      5. 2.2.5 通用寄存器设置
    3. 2.3 使用用于传感器偏置的 VBIAS 和上拉电阻进行热电偶测量
      1. 2.3.1 原理图
      2. 2.3.2 优缺点
      3. 2.3.3 设计说明
      4. 2.3.4 测量转换
      5. 2.3.5 通用寄存器设置
    4. 2.4 使用用于传感器偏置的 VBIAS 和 BOCS 进行热电偶测量
      1. 2.4.1 原理图
      2. 2.4.2 优缺点
      3. 2.4.3 设计说明
      4. 2.4.4 测量转换
      5. 2.4.5 通用寄存器设置
    5. 2.5 使用 REFOUT 偏置和上拉电阻进行热电偶测量
      1. 2.5.1 原理图
      2. 2.5.2 优缺点
      3. 2.5.3 设计说明
      4. 2.5.4 测量转换
      5. 2.5.5 通用的寄存器设置
    6. 2.6 使用 REFOUT 偏置和 BOCS 进行热电偶测量
      1. 2.6.1 原理图
      2. 2.6.2 优缺点
      3. 2.6.3 设计说明
      4. 2.6.4 测量转换
      5. 2.6.5 通用寄存器设置
    7. 2.7 使用双极电源和接地偏置进行热电偶测量
      1. 2.7.1 原理图
      2. 2.7.2 优缺点
      3. 2.7.3 设计说明
      4. 2.7.4 测量转换
      5. 2.7.5 通用寄存器设置
    8. 2.8 冷端补偿电路
      1. 2.8.1 RTD 冷端补偿
        1. 2.8.1.1 原理图
          1. 2.8.1.1.1 设计说明
          2. 2.8.1.1.2 测量转换
          3. 2.8.1.1.3 通用寄存器设置
      2. 2.8.2 热敏电阻冷端补偿
        1. 2.8.2.1 原理图
        2. 2.8.2.2 设计说明
        3. 2.8.2.3 测量转换
        4. 2.8.2.4 通用寄存器设置
      3. 2.8.3 温度传感器冷端补偿
        1. 2.8.3.1 原理图
        2. 2.8.3.2 设计说明
        3. 2.8.3.3 测量转换
        4. 2.8.3.4 通用寄存器设置
  5. 3总结
  6. 4修订历史记录
设计说明

RTD 是一种温度传感器,可随温度改变电阻。RTD 结构有多种不同类型,但在任何给定温度下都有良好的电阻特性。RTD 通常用于进行精密温度测量。图 2-8 展示了用于冷端补偿的温度测量的双线 RTD 电路拓扑。

测量电路需要:

  • 单个专用 IDAC 输出引脚
  • AINP 和 AINN 输入
  • 外部基准输入
  • 精密参考电阻

IDAC 电流源可驱动 RTD 和基准电阻 RREF。由于同一电流驱动两个元件,因此 ADC 测量是比例式测量。RTD 电阻的计算不需要转换为电压,但需要具有高精度和低漂移的精密基准电阻。

借助 IDAC1,ADC 使用 RREF 上的电压作为基准来测量 RTD 上的电压。这样便可提供与 RTD 电压和基准电压之比成比例的输出代码(如方程式 20 所示)。比例式测量仅产生正输出数据(假设偏移误差为零)。对于全差分测量,这只是 ADC 满量程范围的正半部分,会将测量分辨率降低一位。以下方程假设使用 16 位双极 ADC,并以 ±VREF 表示 ADC 的满量程范围。

方程式 20. Output code = 215 • VRTD / VREF = 215 • IIDAC1 • RRTD / (IIDAC1 • RREF)

电流会抵消,因此方程将简化为方程式 21

方程式 21. Output code = 215 • RRTD / RREF

最后,RTD 电阻可通过代码表示为基准电阻的函数。

方程式 22. RRTD = Output code • RREF / 215

测量值取决于 RTD 和基准电阻 RREF 的阻值,而不取决于 IDAC1 电流值。因此,激励电流的绝对精度和温度漂移无关紧要。在比例式测量中,只要 IDAC1 在该电路外部没有漏电流,测量值就只取决于 RRTD 和 RREF。ADC 转换不需要转换为电压。假设 ADC 具有低增益误差,那么 RREF 通常是最大的误差源。基准电阻必须是具有低漂移和高精度的精密电阻。基准电阻中的任何误差都会在测量中引起增益误差。

RTD 有许多不同的类型和几种不同的构造形式。更多有关 RTD 测量的详细信息,请参阅 RTD 测量基本指南