ZHCAA38E August   2021  – January 2023 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   将快速串行接口 (FSI) 应用于应用中的多个器件
  2.   商标
  3. 1FSI 模块简介
  4. 2FSI 应用
  5. 3握手机制
    1. 3.1 菊花链握手机制
    2. 3.2 星型握手机制
  6. 4发送和接收 FSI 数据帧
    1. 4.1 FSI 数据帧配置 API
    2. 4.2 开始传输数据帧
  7. 5菊花链拓扑测试
    1. 5.1 两器件 FSI 通信
      1. 5.1.1 CPU 控制
      2. 5.1.2 DMA 控件
      3. 5.1.3 硬件控制
    2. 5.2 三器件 FSI 通信
      1. 5.2.1 CPU/DMA 控制
      2. 5.2.2 硬件控制
        1. 5.2.2.1 三器件菊花链系统的偏斜补偿
          1. 5.2.2.1.1 CPU/DMA 控制
          2. 5.2.2.1.2 硬件控制
  8. 6星型拓扑测试
  9. 7通过 FSI 进行事件同步
    1. 7.1 引言
      1. 7.1.1 分布式系统的事件同步需求
      2. 7.1.2 采用 FSI 事件同步机制的解决方案
      3. 7.1.3 FSI 事件同步机制功能概述
    2. 7.2 C2000Ware FSI EPWM 同步示例
      1. 7.2.1 C2000Ware 示例工程的位置
      2. 7.2.2 软件配置综述
        1. 7.2.2.1 主控器件配置
        2. 7.2.2.2 节点器件配置
      3. 7.2.3 1 主控和 2 节点 F28002x 器件菊花链测试
        1. 7.2.3.1 硬件设置和配置
        2. 7.2.3.2 试验结果
      4. 7.2.4 1 主控和 8 节点 F28002x 器件菊花链测试
        1. 7.2.4.1 硬件设置和配置
        2. 7.2.4.2 试验结果
      5. 7.2.5 C2000 理论上的不确定性
    3. 7.3 FSI 事件同步的其他提示和用法
      1. 7.3.1 运行示例
      2. 7.3.2 目标配置文件
      3. 7.3.3 星型配置事件同步的用法
  10. 8参考文献
  11. 9修订历史记录
CPU/DMA 控制

器件 2 延迟线校准:器件 1 使用分配的 ID 调用器件 2,一旦器件 2 收到校准调用,就会使用器件 1 发送的数据包来校准其延迟线。在旁路模式下,器件 3 使用 CPU 控制将从器件 2 收到的数据包传输到器件 1。

器件 3 延迟线校准:器件 2 使用分配的 ID 调用器件 3,一旦器件 3 收到校准调用,就会使用器件 2 发送的数据包来校准其延迟线。在旁路模式下,器件 1 使用 CPU 控制将从器件 3 收到的数据包传输到器件 2。

器件 1 延迟线校准:器件 3 使用分配的 ID 调用器件 1,一旦器件 1 收到校准调用,就会使用器件 3 发送的数据包来校准其延迟线。在旁路模式下,器件 2 使用 CPU 控制将从器件 1 收到的数据包传输到器件 3。

因此,如图 #GUID-E22E87E8-CE4D-4068-B671-1086DD5BAAF5 所示,所有三个器件会分阶段进行校准,到校准结束时,菊花链中所有器件的 Rx 延迟线均会配置适当的值。

GUID-E161D7C2-21A0-4E29-A87B-6C4C9A21EC2D-low.png图 5-13 CPU、DMA 控制下偏斜补偿的延迟线校准图