SPRUJD3A July   2025  â€“ October 2025 F28E120SB , F28E120SC

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000â„¢ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studioâ„¢ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit (FPU)
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Power-On Reset (POR)
      4. 3.4.4  Brown-Out-Reset (BOR)
      5. 3.4.5  Watchdog Reset (WDRS)
      6. 3.4.6  NMI Watchdog Reset (NMIWDRS)
      7. 3.4.7  Debugger Reset (SYSRS)
      8. 3.4.8  DCSM Safe Code Copy Reset (SCCRESET)
      9. 3.4.9  Simulate External Reset (SIMRESET.XRS)
      10. 3.4.10 Simulate CPU Reset (SIMRESET_CPU1RS)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
      6. 3.5.6 PIE Interrupt Priority
        1. 3.5.6.1 Channel Priority
        2. 3.5.6.2 Group Priority
      7. 3.5.7 System Error
      8. 3.5.8 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection Logic
        2. 3.6.3.2 Flash Uncorrectable ECC Error
        3. 3.6.3.3 Software-Forced Error
      4. 3.6.4 Illegal Instruction Trap (ITRAP)
      5. 3.6.5 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (SYSOSC)
        2. 3.7.1.2 Backup Wide-Range Oscillator (WROSC)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low Power-Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
    11. 3.11 Memory Controller Module
      1. 3.11.1 Dedicated RAM (Mx RAM)
      2. 3.11.2 Global Shared RAM (GSx RAM)
      3. 3.11.3 Access Arbitration
      4. 3.11.4 Memory Error Detection, Correction, and Error Handling
        1. 3.11.4.1 Error Detection and Correction
        2. 3.11.4.2 Error Handling
      5. 3.11.5 Application Test Hooks for Error Detection and Correction
      6. 3.11.6 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 System Control Register Configuration Restrictions
    14. 3.14 Software
      1. 3.14.1 SYSCTL Examples
        1. 3.14.1.1 Missing clock detection (MCD)
        2. 3.14.1.2 XCLKOUT (External Clock Output) Configuration
    15. 3.15 SYSCTRL Registers
      1. 3.15.1  SYSCTRL Base Address Table
      2. 3.15.2  CPUTIMER_REGS Registers
      3. 3.15.3  PIE_CTRL_REGS Registers
      4. 3.15.4  WD_REGS Registers
      5. 3.15.5  NMI_INTRUPT_REGS Registers
      6. 3.15.6  XINT_REGS Registers
      7. 3.15.7  SYNC_SOC_REGS Registers
      8. 3.15.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.15.9  DEV_CFG_REGS Registers
      10. 3.15.10 CLK_CFG_REGS Registers
      11. 3.15.11 CPU_SYS_REGS Registers
      12. 3.15.12 SYS_STATUS_REGS Registers
      13. 3.15.13 MEM_CFG_REGS Registers
      14. 3.15.14 MEMORY_ERROR_REGS Registers
      15. 3.15.15 ROM_WAIT_STATE_REGS Registers
      16. 3.15.16 TEST_ERROR_REGS Registers
      17. 3.15.17 UID_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
      2. 4.5.2 Emulation Boot Flow
      3. 4.5.3 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Secure Flash Boot
        1. 4.7.4.1 Secure Flash CPU1 Linker File Example
      5. 4.7.5  Memory Maps
        1. 4.7.5.1 Boot ROM Memory Maps
        2. 4.7.5.2 Reserved RAM Memory Maps
      6. 4.7.6  ROM Tables
      7. 4.7.7  Boot Modes and Loaders
        1. 4.7.7.1 Boot Modes
          1. 4.7.7.1.1 Flash Boot
          2. 4.7.7.1.2 RAM Boot
          3. 4.7.7.1.3 Wait Boot
        2. 4.7.7.2 Bootloaders
          1. 4.7.7.2.1 SCI Boot Mode
          2. 4.7.7.2.2 SPI Boot Mode
          3. 4.7.7.2.3 I2C Boot Mode
          4. 4.7.7.2.4 Parallel Boot Mode
      8. 4.7.8  GPIO Assignments
      9. 4.7.9  Secure ROM Function APIs
      10. 4.7.10 Clock Initializations
      11. 4.7.11 Boot Status Information
        1. 4.7.11.1 Booting Status
      12. 4.7.12 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Bootloader Data Stream Structure
        1. 4.8.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Execute-Only Protection
      5. 5.2.5 Password Lock
      6. 5.2.6 JTAGLOCK
      7. 5.2.7 Link Pointer and Zone Select
      8. 5.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
      1. 5.6.1 RAMOPEN
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Wrapper
    4. 6.4  Flash and OTP Memory Performance
    5. 6.5  Flash Read Interface
      1. 6.5.1 C28x-Flash Read Interface
        1. 6.5.1.1 Standard Read Mode
        2. 6.5.1.2 Prefetch Mode
        3. 6.5.1.3 Data Cache
        4. 6.5.1.4 Flash Read Operation
    6. 6.6  Flash Erase and Program
      1. 6.6.1 Erase
      2. 6.6.2 Program
      3. 6.6.3 Verify
    7. 6.7  Error Correction Code (ECC) Protection
      1. 6.7.1 Single-Bit Data Error
      2. 6.7.2 Uncorrectable Error
      3. 6.7.3 ECC Logic Self Test
    8. 6.8  Reserved Locations Within Flash and OTP
    9. 6.9  Migrating an Application from RAM to Flash
    10. 6.10 Procedure to Change the Flash Control Registers
    11. 6.11 Software
      1. 6.11.1 FLASH Examples
        1. 6.11.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
    12. 6.12 FLASH Registers
      1. 6.12.1 FLASH Base Address Table
      2. 6.12.2 FLASH_CTRL_REGS Registers
      3. 6.12.3 FLASH_ECC_REGS Registers
  9. Dual-Clock Comparator (DCC)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 Block Diagram
    2. 7.2 Module Operation
      1. 7.2.1 Configuring DCC Counters
      2. 7.2.2 Single-Shot Measurement Mode
      3. 7.2.3 Continuous Monitoring Mode
      4. 7.2.4 Error Conditions
    3. 7.3 Interrupts
    4. 7.4 Software
      1. 7.4.1 DCC Examples
        1. 7.4.1.1 DCC Single shot Clock verification
        2. 7.4.1.2 DCC Single shot Clock measurement
        3. 7.4.1.3 DCC Continuous clock monitoring
        4. 7.4.1.4 DCC Continuous clock monitoring
        5. 7.4.1.5 DCC Detection of clock failure
    5. 7.5 DCC Registers
      1. 7.5.1 DCC Base Address Table
      2. 7.5.2 DCC_REGS Registers
  10. General-Purpose Input/Output (GPIO)
    1. 8.1  Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2  Configuration Overview
    3. 8.3  Digital Inputs on ADC Pins (AIOs)
    4. 8.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 8.5  Digital General-Purpose I/O Control
    6. 8.6  Input Qualification
      1. 8.6.1 No Synchronization (Asynchronous Input)
      2. 8.6.2 Synchronization to SYSCLKOUT Only
      3. 8.6.3 Qualification Using a Sampling Window
    7. 8.7  GPIO and Peripheral Muxing
      1. 8.7.1 GPIO Muxing
      2. 8.7.2 Peripheral Muxing
    8. 8.8  Internal Pullup Configuration Requirements
    9. 8.9  Open-Drain Configuration Requirements
    10. 8.10 Software
      1. 8.10.1 GPIO Examples
        1. 8.10.1.1 Device GPIO Setup
        2. 8.10.1.2 Device GPIO Toggle
        3. 8.10.1.3 Device GPIO Interrupt
        4. 8.10.1.4 External Interrupt (XINT)
      2. 8.10.2 LED Examples
    11. 8.11 GPIO Registers
      1. 8.11.1 GPIO Base Address Table
      2. 8.11.2 GPIO_CTRL_REGS Registers
      3. 8.11.3 GPIO_DATA_REGS Registers
      4. 8.11.4 GPIO_DATA_READ_REGS Registers
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR
    2. 9.2 MCPWM and GPIO Output X-BAR
      1. 9.2.1 MCPWM X-BAR
        1. 9.2.1.1 MCPWM X-BAR Architecture
      2. 9.2.2 GPIO Output X-BAR
        1. 9.2.2.1 GPIO Output X-BAR Architecture
      3. 9.2.3 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 PWM_XBAR_REGS Registers
      5. 9.3.5 OUTPUT_XBAR_REGS Registers
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
  13. 11Analog Subsystem
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Digital Inputs on ADC Pins (AIOs)
    3. 11.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    4. 11.4 Analog Pins and Internal Connections
    5. 11.5 ASBSYS Registers
      1. 11.5.1 ASBSYS Base Address Table
      2. 11.5.2 ANALOG_SUBSYS_REGS Registers
  14. 12Analog-to-Digital Converter (ADC)
    1. 12.1  Introduction
      1. 12.1.1 Features
      2. 12.1.2 ADC Related Collateral
      3. 12.1.3 Block Diagram
    2. 12.2  ADC Configurability
      1. 12.2.1 ADC Clock Configuration
      2. 12.2.2 Resolution
      3. 12.2.3 Voltage Reference
        1. 12.2.3.1 External Reference Mode
        2. 12.2.3.2 Internal Reference Mode
        3. 12.2.3.3 Selecting Reference Mode
      4. 12.2.4 Signal Mode
        1. 12.2.4.1 Expected Conversion Results
        2. 12.2.4.2 Interpreting Conversion Results
    3. 12.3  SOC Principle of Operation
      1. 12.3.1 SOC Configuration
      2. 12.3.2 Trigger Operation
        1. 12.3.2.1 Trigger Repeaters
          1. 12.3.2.1.1 Oversampling Mode
          2. 12.3.2.1.2 Re-trigger Spread
          3. 12.3.2.1.3 Trigger Repeater Configuration
            1. 12.3.2.1.3.1 Register Shadow Updates
          4. 12.3.2.1.4 Re-Trigger Logic
          5. 12.3.2.1.5 Multi-Path Triggering Behavior
      3. 12.3.3 ADC Acquisition (Sample and Hold) Window
      4. 12.3.4 Sample Capacitor Reset
      5. 12.3.5 ADC Input Models
      6. 12.3.6 Channel Selection
    4. 12.4  SOC Configuration Examples
      1. 12.4.1 Single Conversion from MCPWM Trigger
      2. 12.4.2 Multiple Conversions from CPU Timer Trigger
      3. 12.4.3 Software Triggering of SOCs
    5. 12.5  ADC Conversion Priority
    6. 12.6  EOC and Interrupt Operation
      1. 12.6.1 Interrupt Overflow
      2. 12.6.2 Continue to Interrupt Mode
      3. 12.6.3 Early Interrupt Configuration Mode
    7. 12.7  Post-Processing Blocks
      1. 12.7.1 PPB Offset Correction
      2. 12.7.2 PPB Error Calculation
      3. 12.7.3 PPB Limit Detection and Zero-Crossing Detection
    8. 12.8  Opens/Shorts Detection Circuit (OSDETECT)
      1. 12.8.1 Open Short Detection Implementation
      2. 12.8.2 Detecting an Open Input Pin
      3. 12.8.3 Detecting a Shorted Input Pin
    9. 12.9  Power-Up Sequence
    10. 12.10 ADC Calibration
      1. 12.10.1 ADC Zero Offset Calibration
    11. 12.11 ADC Timings
      1. 12.11.1 ADC Timing Diagrams
      2. 12.11.2 Post-Processing Block Timings
    12. 12.12 Additional Information
      1. 12.12.1 Choosing an Acquisition Window Duration
      2. 12.12.2 Result Register Mapping
      3. 12.12.3 Internal Temperature Sensor
      4. 12.12.4 Designing an External Reference Circuit
      5. 12.12.5 ADC-DAC Loopback Testing
      6. 12.12.6 Internal Test Mode
    13. 12.13 Software
      1. 12.13.1 ADC Examples
        1. 12.13.1.1 ADC Software Triggering
        2. 12.13.1.2 ADC MCPWM Triggering
        3. 12.13.1.3 ADC Temperature Sensor Conversion
        4. 12.13.1.4 ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        5. 12.13.1.5 ADC PPB Offset (adc_ppb_offset)
        6. 12.13.1.6 ADC PPB Limits (adc_ppb_limits)
        7. 12.13.1.7 ADC SOC Oversampling
        8. 12.13.1.8 ADC Trigger Repeater Oversampling
    14. 12.14 ADC Registers
      1. 12.14.1 ADC Base Address Table
      2. 12.14.2 ADC_LITE_RESULT_REGS Registers
      3. 12.14.3 ADC_LITE_REGS Registers
  15. 13Comparator Subsystem (CMPSS)
    1. 13.1 Introduction
      1. 13.1.1 Features
      2. 13.1.2 CMPSS Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2 Comparator
    3. 13.3 Reference DAC
    4. 13.4 Digital Filter
      1. 13.4.1 Filter Initialization Sequence
    5. 13.5 Using the CMPSS
      1. 13.5.1 LATCHCLR, and MCPWMSYNCPER Signals
      2. 13.5.2 Synchronizer, Digital Filter, and Latch Delays
      3. 13.5.3 Calibrating the CMPSS
      4. 13.5.4 Enabling and Disabling the CMPSS Clock
    6. 13.6 CMPSS DAC Output
    7. 13.7 Software
      1. 13.7.1 CMPSS Examples
      2. 13.7.2 CMPSS_LITE Examples
        1. 13.7.2.1 CMPSSLITE Asynchronous Trip
    8. 13.8 CMPSS Registers
      1. 13.8.1 CMPSS Base Address Table
      2. 13.8.2 CMPSS_LITE_REGS Registers
  16. 14Programmable Gain Amplifier (PGA)
    1. 14.1  Programmable Gain Amplifier (PGA) Overview
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2  Linear Output Range
    3. 14.3  Gain Values
    4. 14.4  Modes of Operation
      1. 14.4.1 Buffer Mode
      2. 14.4.2 Standalone Mode
      3. 14.4.3 Non-inverting Mode
      4. 14.4.4 Subtractor Mode
    5. 14.5  External Filtering
      1. 14.5.1 Low-Pass Filter Using Internal Filter Resistor and External Capacitor
      2. 14.5.2 Single Pole Low-Pass Filter Using Internal Gain Resistor and External Capacitor
    6. 14.6  Error Calibration
      1. 14.6.1 Offset Error
      2. 14.6.2 Gain Error
    7. 14.7  Chopping Feature
    8. 14.8  Enabling and Disabling the PGA Clock
    9. 14.9  Lock Register
    10. 14.10 Analog Front-End Integration
      1. 14.10.1 Analog-to-Digital Converter (ADC)
        1. 14.10.1.1 Unfiltered Acquisition Window
        2. 14.10.1.2 Filtered Acquisition Window
      2. 14.10.2 Comparator Subsystem (CMPSS)
      3. 14.10.3 Alternate Functions
    11. 14.11 Examples
      1. 14.11.1 Non-Inverting Amplifier Using Non-Inverting Mode
      2. 14.11.2 Buffer Mode
      3. 14.11.3 Low-Side Current Sensing
      4. 14.11.4 Bidirectional Current Sensing
    12. 14.12 Software
      1. 14.12.1 PGA Examples
        1. 14.12.1.1 PGA CMPSSDAC-ADC External Loopback Example
    13. 14.13 PGA Registers
      1. 14.13.1 PGA Base Address Table
      2. 14.13.2 PGA_REGS Registers
  17. 15Multi-Channel Pulse Width Modulator (MCPWM)
    1. 15.1  Introduction
      1. 15.1.1 PWM Related Collateral
      2. 15.1.2 Submodule Overview
    2. 15.2  Configuring Device Pins
    3. 15.3  MCPWM Modules Overview
    4. 15.4  Time-Base (TB) Submodule
      1. 15.4.1 Purpose of the Time-Base Submodule
      2. 15.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 15.4.3 Calculating PWM Period and Frequency
        1. 15.4.3.1 Time-Base Period Shadow Register
        2. 15.4.3.2 Time-Base Clock Synchronization
        3. 15.4.3.3 Time-Base Counter Synchronization
        4. 15.4.3.4 MCPWM SYNC Selection
      4. 15.4.4 Phase Locking the Time-Base Clocks of Multiple MCPWM Modules
      5. 15.4.5 Time-Base Counter Modes and Timing Waveforms
      6. 15.4.6 Global Load
        1. 15.4.6.1 One-Shot Load Mode
    5. 15.5  Counter-Compare (CC) Submodule
      1. 15.5.1 Purpose of the Counter-Compare Submodule
      2. 15.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 15.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 15.5.4 Count Mode Timing Waveforms
    6. 15.6  Action-Qualifier (AQ) Submodule
      1. 15.6.1 Purpose of the Action-Qualifier Submodule
      2. 15.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 15.6.3 Action-Qualifier Event Priority
      4. 15.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 15.6.5 Configuration Requirements for Common Waveforms
    7. 15.7  Dead-Band Generator (DB) Submodule
      1. 15.7.1 Purpose of the Dead-Band Submodule
      2. 15.7.2 Dead-Band Submodule Additional Operating Modes
      3. 15.7.3 Operational Highlights for the Dead-Band Submodule
    8. 15.8  Trip-Zone (TZ) Submodule
      1. 15.8.1 Purpose of the Trip-Zone Submodule
      2. 15.8.2 Operational Highlights for the Trip-Zone Submodule
        1. 15.8.2.1 Trip-Zone Configurations
      3. 15.8.3 Generating Trip Event Interrupts
    9. 15.9  Event-Trigger (ET) Submodule
      1. 15.9.1 Operational Overview of the MCPWM Event-Trigger Submodule
    10. 15.10 PWM Crossbar (X-BAR)
    11. 15.11 Software
      1. 15.11.1 MCPWM Examples
        1. 15.11.1.1 MCPWM Basic PWM Generation and Updates
        2. 15.11.1.2 MCPWM Basic PWM Generation and Updates
        3. 15.11.1.3 MCPWM Basic PWM generation With DeadBand
        4. 15.11.1.4 MCPWM Basic PWM Generation and Updates without Sysconfig
        5. 15.11.1.5 MCPWM PWM Tripzone Feature Showcase
        6. 15.11.1.6 MCPWM Global Load Feature Showcase
        7. 15.11.1.7 MCPWM DMA Configuration for Dynamic PWM Control
    12. 15.12 MCPWM Registers
      1. 15.12.1 MCPWM Base Address Table
      2. 15.12.2 MCPWM_6CH_REGS Registers
      3. 15.12.3 MCPWM_2CH_REGS Registers
  18. 16Enhanced Capture (eCAP)
    1. 16.1 Introduction
      1. 16.1.1 Features
      2. 16.1.2 ECAP Related Collateral
    2. 16.2 Description
    3. 16.3 Configuring Device Pins for the eCAP
    4. 16.4 Capture and APWM Operating Mode
    5. 16.5 Capture Mode Description
      1. 16.5.1 Event Prescaler
      2. 16.5.2 Edge Polarity Select and Qualifier
      3. 16.5.3 Continuous/One-Shot Control
      4. 16.5.4 32-Bit Counter and Phase Control
      5. 16.5.5 CAP1-CAP4 Registers
      6. 16.5.6 eCAP Synchronization
        1. 16.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 16.5.7 Interrupt Control
      8. 16.5.8 Shadow Load and Lockout Control
      9. 16.5.9 APWM Mode Operation
    6. 16.6 Application of the eCAP Module
      1. 16.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 16.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 16.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 16.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 16.7 Application of the APWM Mode
      1. 16.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 16.8 Software
      1. 16.8.1 ECAP Examples
        1. 16.8.1.1 eCAP APWM Example
        2. 16.8.1.2 eCAP Capture PWM Example
    9. 16.9 ECAP Registers
      1. 16.9.1 ECAP Base Address Table
      2. 16.9.2 ECAP_REGS Registers
  19. 17Enhanced Quadrature Encoder Pulse (eQEP)
    1. 17.1  Introduction
      1. 17.1.1 EQEP Related Collateral
    2. 17.2  Configuring Device Pins
    3. 17.3  Description
      1. 17.3.1 EQEP Inputs
      2. 17.3.2 Functional Description
      3. 17.3.3 eQEP Memory Map
    4. 17.4  Quadrature Decoder Unit (QDU)
      1. 17.4.1 Position Counter Input Modes
        1. 17.4.1.1 Quadrature Count Mode
        2. 17.4.1.2 Direction-Count Mode
        3. 17.4.1.3 Up-Count Mode
        4. 17.4.1.4 Down-Count Mode
      2. 17.4.2 eQEP Input Polarity Selection
      3. 17.4.3 Position-Compare Sync Output
    5. 17.5  Position Counter and Control Unit (PCCU)
      1. 17.5.1 Position Counter Operating Modes
        1. 17.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 17.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 17.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 17.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 17.5.2 Position Counter Latch
        1. 17.5.2.1 Index Event Latch
        2. 17.5.2.2 Strobe Event Latch
      3. 17.5.3 Position Counter Initialization
      4. 17.5.4 eQEP Position-compare Unit
    6. 17.6  eQEP Edge Capture Unit
    7. 17.7  eQEP Watchdog
    8. 17.8  eQEP Unit Timer Base
    9. 17.9  QMA Module
      1. 17.9.1 Modes of Operation
        1. 17.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 17.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 17.9.2 Interrupt and Error Generation
    10. 17.10 eQEP Interrupt Structure
    11. 17.11 Software
      1. 17.11.1 EQEP Examples
        1. 17.11.1.1 Frequency Measurement Using eQEP
        2. 17.11.1.2 Position and Speed Measurement Using eQEP
        3. 17.11.1.3 Frequency Measurement Using eQEP via unit timeout interrupt
        4. 17.11.1.4 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 17.12 EQEP Registers
      1. 17.12.1 EQEP Base Address Table
      2. 17.12.2 EQEP_REGS Registers
  20. 18Universal Asynchronous Receiver/Transmitter (UART)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 Block Diagram
    2. 18.2 Functional Description
      1. 18.2.1 Transmit and Receive Logic
      2. 18.2.2 Baud-Rate Generation
      3. 18.2.3 Data Transmission
      4. 18.2.4 Serial IR (SIR)
      5. 18.2.5 9-Bit UART Mode
      6. 18.2.6 FIFO Operation
      7. 18.2.7 Interrupts
      8. 18.2.8 Loopback Operation
      9. 18.2.9 DMA Operation
        1. 18.2.9.1 Receiving Data Using UART with DMA
        2. 18.2.9.2 Transmitting Data Using UART with DMA
    3. 18.3 Initialization and Configuration
    4. 18.4 Software
      1. 18.4.1 UART Examples
        1. 18.4.1.1 UART Echoback
        2. 18.4.1.2 UART Loopback
        3. 18.4.1.3 UART Loopback with interrupt
        4. 18.4.1.4 UART Digital Loopback with DMA
    5. 18.5 UART Registers
      1. 18.5.1 UART Base Address Table
      2. 18.5.2 UART_REGS Registers
      3. 18.5.3 UART_REGS_WRITE Registers
  21. 19Serial Peripheral Interface (SPI)
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 System-Level Integration
      1. 19.2.1 SPI Module Signals
      2. 19.2.2 Configuring Device Pins
        1. 19.2.2.1 GPIOs Required for High-Speed Mode
      3. 19.2.3 SPI Interrupts
      4. 19.2.4 DMA Support
    3. 19.3 SPI Operation
      1. 19.3.1  Introduction to Operation
      2. 19.3.2  Controller Mode
      3. 19.3.3  Peripheral Mode
      4. 19.3.4  Data Format
        1. 19.3.4.1 Transmission of Bit from SPIRXBUF
      5. 19.3.5  Baud Rate Selection
        1. 19.3.5.1 Baud Rate Determination
        2. 19.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 19.3.6  SPI Clocking Schemes
      7. 19.3.7  SPI FIFO Description
      8. 19.3.8  SPI DMA Transfers
        1. 19.3.8.1 Transmitting Data Using SPI with DMA
        2. 19.3.8.2 Receiving Data Using SPI with DMA
      9. 19.3.9  SPI High-Speed Mode
      10. 19.3.10 SPI 3-Wire Mode Description
    4. 19.4 Programming Procedure
      1. 19.4.1 Initialization Upon Reset
      2. 19.4.2 Configuring the SPI
      3. 19.4.3 Configuring the SPI for High-Speed Mode
      4. 19.4.4 Data Transfer Example
      5. 19.4.5 SPI 3-Wire Mode Code Examples
        1. 19.4.5.1 3-Wire Controller Mode Transmit
        2.       679
          1. 19.4.5.2.1 3-Wire Controller Mode Receive
        3.       681
          1. 19.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       683
          1. 19.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 19.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 19.5 Software
      1. 19.5.1 SPI Examples
        1. 19.5.1.1 SPI Digital Loopback
        2. 19.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 19.5.1.3 SPI Digital Loopback with DMA
        4. 19.5.1.4 SPI EEPROM
        5. 19.5.1.5 SPI DMA EEPROM
    6. 19.6 SPI Registers
      1. 19.6.1 SPI Base Address Table
      2. 19.6.2 SPI_REGS Registers
  22. 20Inter-Integrated Circuit Module (I2C)
    1. 20.1 Introduction
      1. 20.1.1 I2C Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Features Not Supported
      4. 20.1.4 Functional Overview
      5. 20.1.5 Clock Generation
      6. 20.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 20.1.6.1 Formula for the Controller Clock Period
    2. 20.2 Configuring Device Pins
    3. 20.3 I2C Module Operational Details
      1. 20.3.1  Input and Output Voltage Levels
      2. 20.3.2  Selecting Pullup Resistors
      3. 20.3.3  Data Validity
      4. 20.3.4  Operating Modes
      5. 20.3.5  I2C Module START and STOP Conditions
      6. 20.3.6  Non-repeat Mode versus Repeat Mode
      7. 20.3.7  Serial Data Formats
        1. 20.3.7.1 7-Bit Addressing Format
        2. 20.3.7.2 10-Bit Addressing Format
        3. 20.3.7.3 Free Data Format
        4. 20.3.7.4 Using a Repeated START Condition
      8. 20.3.8  Clock Synchronization
      9. 20.3.9  Clock Stretching
      10. 20.3.10 Arbitration
      11. 20.3.11 Digital Loopback Mode
      12. 20.3.12 NACK Bit Generation
    4. 20.4 Interrupt Requests Generated by the I2C Module
      1. 20.4.1 Basic I2C Interrupt Requests
      2. 20.4.2 I2C FIFO Interrupts
    5. 20.5 Resetting or Disabling the I2C Module
    6. 20.6 Software
      1. 20.6.1 I2C Registers to Driverlib Functions
      2. 20.6.2 I2C Examples
        1. 20.6.2.1 C28x-I2C Library source file for FIFO interrupts
        2. 20.6.2.2 C28x-I2C Library source file for FIFO using polling
        3. 20.6.2.3 I2C Digital Loopback with FIFO Interrupts
        4. 20.6.2.4 I2C EEPROM
        5. 20.6.2.5 I2C EEPROM
        6. 20.6.2.6 I2C EEPROM
    7. 20.7 I2C Registers
      1. 20.7.1 I2C Base Address Table
      2. 20.7.2 I2C_REGS Registers
  23. 21Serial Communications Interface (SCI)
    1. 21.1  Introduction
      1. 21.1.1 Features
      2. 21.1.2 SCI Related Collateral
      3. 21.1.3 Block Diagram
    2. 21.2  Architecture
    3. 21.3  SCI Module Signal Summary
    4. 21.4  Configuring Device Pins
    5. 21.5  Multiprocessor and Asynchronous Communication Modes
    6. 21.6  SCI Programmable Data Format
    7. 21.7  SCI Multiprocessor Communication
      1. 21.7.1 Recognizing the Address Byte
      2. 21.7.2 Controlling the SCI TX and RX Features
      3. 21.7.3 Receipt Sequence
    8. 21.8  Idle-Line Multiprocessor Mode
      1. 21.8.1 Idle-Line Mode Steps
      2. 21.8.2 Block Start Signal
      3. 21.8.3 Wake-Up Temporary (WUT) Flag
        1. 21.8.3.1 Sending a Block Start Signal
      4. 21.8.4 Receiver Operation
    9. 21.9  Address-Bit Multiprocessor Mode
      1. 21.9.1 Sending an Address
    10. 21.10 SCI Communication Format
      1. 21.10.1 Receiver Signals in Communication Modes
      2. 21.10.2 Transmitter Signals in Communication Modes
    11. 21.11 SCI Port Interrupts
      1. 21.11.1 Break Detect
    12. 21.12 SCI Baud Rate Calculations
    13. 21.13 SCI Enhanced Features
      1. 21.13.1 SCI FIFO Description
      2. 21.13.2 SCI Auto-Baud
      3. 21.13.3 Autobaud-Detect Sequence
    14. 21.14 Software
      1. 21.14.1 SCI Examples
        1. 21.14.1.1 Tune Baud Rate via UART Example
        2. 21.14.1.2 SCI FIFO Digital Loop Back
        3. 21.14.1.3 SCI Digital Loop Back with Interrupts
        4. 21.14.1.4 SCI Echoback
        5. 21.14.1.5 stdout redirect example
    15. 21.15 SCI Registers
      1. 21.15.1 SCI Base Address Table
      2. 21.15.2 SCI_REGS Registers
  24. 22Revision History

ANALOG_SUBSYS_REGS Registers

Table 11-6 lists the memory-mapped registers for the ANALOG_SUBSYS_REGS registers. All register offset addresses not listed in Table 11-6 should be considered as reserved locations and the register contents should not be modified.

Table 11-6 ANALOG_SUBSYS_REGS Registers
OffsetAcronymRegister NameWrite Protection
2ChADCOSDETECTI2V Logic ControlEALLOW
3AhREFCONFIGAConfig register for analog reference A.EALLOW
56hINTERNALTESTCTLINTERNALTEST Node Control RegisterEALLOW
6AhCONFIGLOCKLock Register for all the config registers.EALLOW
6ChTSNSCTLTemperature Sensor Control RegisterEALLOW
74hANAREFCTLAnalog Reference Control Register. This register is not configurable for 32QFN packageEALLOW
7ChVMONCTLVoltage Monitor Control RegisterEALLOW
8EhCMPHPMXSELBits to select one of the many sources on CompHP inputs. Refer to Pimux diagram for details.EALLOW
90hCMPLPMXSELBits to select one of the many sources on CompLP inputs. Refer to Pimux diagram for details.EALLOW
92hCMPHNMXSELBits to select one of the many sources on CompHN inputs. Refer to Pimux diagram for details.EALLOW
93hCMPLNMXSELBits to select one of the many sources on CompLN inputs. Refer to Pimux diagram for details.EALLOW
94hADCDACLOOPBACKEnabble loopback from DAC to ADCs
97hCMPSSCTLCMPSS Control RegisterEALLOW
9AhLOCKLock RegisterEALLOW
120hAGPIOCTRLAAGPIO Control RegisterEALLOW
12EhAGPIOCTRLHAGPIO Control RegisterEALLOW
140hGPIOINENACTRLGPIOINENACTRL Control RegisterEALLOW

Complex bit access types are encoded to fit into small table cells. Table 11-7 shows the codes that are used for access types in this section.

Table 11-7 ANALOG_SUBSYS_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
WOnceW
Once
Write
Write once
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

11.5.2.1 ADCOSDETECT Register (Offset = 2Ch) [Reset = 0000h]

ADCOSDETECT is shown in Figure 11-3 and described in Table 11-8.

Return to the Summary Table.

I2V Logic Control

Figure 11-3 ADCOSDETECT Register
15141312111098
RESERVED
R/W-0h
76543210
DETECTCFGOSDETECT_ENRESERVED
R/W-0hR/W-0hR/W-0h
Table 11-8 ADCOSDETECT Register Field Descriptions
BitFieldTypeResetDescription
15-8RESERVEDR/W0hReserved
7-5DETECTCFGR/W0hADC Opens and Shorts Detect Configuration. This bit field defines the open/shorts detection circuit state.

0h Open/Shorts detection circuit is disabled.
1h Open/Shorts detection circuit is enabled at zero scale.
2h Open/Shorts detection circuit is enabled at full scale.
3h Open/Shorts detection circuit is enabled at (nominal) 5/12 scale.
4h Open/Shorts detection circuit is enabled at (nominal) 7/12 scale.
5h Open/Shorts detection circuit is enabled with a (nominal) 5K pulldown to VSSA.
6h Open/Shorts detection circuit is enabled with a (nominal) 5K pullup to VDDA.
7h Open/Shorts detection circuit is enabled with a (nominal) 7K pulldown to VSSA.

Reset type: XRSn

4OSDETECT_ENR/W0hSet this bit to enable the OSDETECT logic

Reset type: XRSn

3-0RESERVEDR/W0hReserved

11.5.2.2 REFCONFIGA Register (Offset = 3Ah) [Reset = 00000000h]

REFCONFIGA is shown in Figure 11-4 and described in Table 11-9.

Return to the Summary Table.

Config register for analog reference A.

Figure 11-4 REFCONFIGA Register
3130292827262524
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDANAREFSELRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 11-9 REFCONFIGA Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR/W0hReserved
30RESERVEDR/W0hReserved
29-28RESERVEDR/W0hReserved
27RESERVEDR/W0hReserved
26-21RESERVEDR/W0hReserved
20ANAREFSELR/W0hAnalog reference mode select. This bit selects whether the VREFHI pin uses internal reference mode (the device drives a voltage onto the VREFHI pin) or external reference mode (the system is expected to drive a voltage into the VREFHI pin).

0 Internal reference mode
1 External reference mode

Reset type: XRSn

19RESERVEDR/W0hReserved
18-15RESERVEDR/W0hReserved
14-12RESERVEDR/W0hReserved
11-5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1RESERVEDR/W0hReserved
0RESERVEDR/W0hReserved

11.5.2.3 INTERNALTESTCTL Register (Offset = 56h) [Reset = 00000000h]

INTERNALTESTCTL is shown in Figure 11-5 and described in Table 11-10.

Return to the Summary Table.

INTERNALTEST Node Control Register

Figure 11-5 INTERNALTESTCTL Register
3130292827262524
RESERVED
R-0/W-0h
2322212019181716
RESERVED
R-0/W-0h
15141312111098
RESERVEDRESERVED
R-0-0hR/W-0h
76543210
RESERVEDTESTSEL
R/W-0hR/W-0h
Table 11-10 INTERNALTESTCTL Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-0/W0hReserved
15-9RESERVEDR-00hReserved
8-6RESERVEDR/W0hReserved
5-0TESTSELR/W0hTest Select. This bit field defines which internal node, if any, is selected to come out on the INTERNALTEST node connected to the ADC.

Reset type: SYSRSn


0h (R/W) = No internal connection
1h (R/W) = VDDCORE
2h (R/W) = VDDA
3h (R/W) = VSSA
4h (R/W) = VREFLO
5h (R/W) = Reserved
6h (R/W) = Reserved
7h (R/W) = Reserved
8h (R/W) = Reserved
9h (R/W) = Reserved
Ah (R/W) = Reserved
Bh (R/W) = Reserved
Ch (R/W) = Reserved
1Ch (R/W) = Reserved
1Dh (R/W) = Reserved
1Eh (R/W) = CMPSS1 VDDA sense on TESTANA0,VSSA sense on TESTANA1
1Fh (R/W) = ADCA VDDA sense on TESTANA0,VSSA sense on TESTANA1
20h (R/W) = COMP DAC BUFFER VDDA sense on TESTANA0,VSSA sense on TESTANA1
21h (R/W) = PGA1 VDDA sense on TESTANA0,VSSA sense on TESTANA1
22h (R/W) = Reserved
23h (R/W) = Reserved
24h (R/W) = Reserved
25h (R/W) = Reserved
28h (R/W) = Reserved
29h (R/W) = Reserved
2Ah (R/W) = Reserved
2Bh (R/W) = Reserved
2Ch (R/W) = Reserved
2Dh (R/W) = Reserved
30h (R/W) = Reserved
31h (R/W) = Reserved
3Fh (R/W) = Reserved

11.5.2.4 CONFIGLOCK Register (Offset = 6Ah) [Reset = 00000000h]

CONFIGLOCK is shown in Figure 11-6 and described in Table 11-11.

Return to the Summary Table.

Lock Register for all the config registers.

Figure 11-6 CONFIGLOCK Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDGPIOINENACTRLRESERVEDRESERVEDAGPIOCTRLRESERVEDRESERVEDRESERVED
R-0-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 11-11 CONFIGLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-7RESERVEDR-00hReserved
6GPIOINENACTRLR/WSonce0hLocks all GPIOINENACTRL Register. Setting this bit will disable any future writes to this reigster. This bit can only be cleared by a reset.

Reset type: SYSRSn

5RESERVEDR/WSonce0hReserved
4RESERVEDR/WSonce0hReserved
3AGPIOCTRLR/WSonce0hLocks all AGPIOCTRL Register. Setting this bit will disable any future writes to this reigster. This bit can only be cleared by a reset.

Reset type: SYSRSn

2RESERVEDR/WSonce0hReserved
1RESERVEDR/WSonce0hReserved
0RESERVEDR/WSonce0hReserved

11.5.2.5 TSNSCTL Register (Offset = 6Ch) [Reset = 0000h]

TSNSCTL is shown in Figure 11-7 and described in Table 11-12.

Return to the Summary Table.

Temperature Sensor Control Register

Figure 11-7 TSNSCTL Register
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDENABLE
R-0-0hR/W-0h
Table 11-12 TSNSCTL Register Field Descriptions
BitFieldTypeResetDescription
15-1RESERVEDR-00hReserved
0ENABLER/W0hTemperature Sensor Enable. This bit enables the temperature sensor output to the ADC.

0 Disabled
1 Enabled

Reset type: SYSRSn

11.5.2.6 ANAREFCTL Register (Offset = 74h) [Reset = 000Fh]

ANAREFCTL is shown in Figure 11-8 and described in Table 11-13.

Return to the Summary Table.

Analog Reference Control Register. This register is not configurable for 32QFN package

Figure 11-8 ANAREFCTL Register
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDANAREF2P5SEL
R/W-0hR-0-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVED
R-0-1hR/W-1hR/W-1hR/W-1h
Table 11-13 ANAREFCTL Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR/W0hReserved
14-11RESERVEDR-00hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8ANAREF2P5SELR/W0hAnalog reference A 2.5V source select. In internal reference mode, this bit selects which voltage the internal reference buffer drives onto the VREFHI pin. The buffer can drive either 1.65V onto the pin, resulting in a reference range of 0 to 3.3V, or the buffer can drive 2.5V onto the pin, resulting in a reference range of 0 to 2.5V. If switching between these two modes, the user must allow adequate time for the external capacitor to charge to the new voltage before using the ADC or buffered DAC.

0 Internal 1.65V reference mode (3.3V reference range)
1 Internal 2.5V reference mode (2.5V reference range)

Reset type: XRSn

7-3RESERVEDR-01hReserved
2RESERVEDR/W1hReserved
1RESERVEDR/W1hReserved
0RESERVEDR/W1hReserved

11.5.2.7 VMONCTL Register (Offset = 7Ch) [Reset = 0000h]

VMONCTL is shown in Figure 11-9 and described in Table 11-14.

Return to the Summary Table.

Voltage Monitor Control Register

Figure 11-9 VMONCTL Register
15141312111098
RESERVEDBORLVMONDIS
R-0-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVED
R-0-0hR/W-0hR/W-0h
Table 11-14 VMONCTL Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR-00hReserved
8BORLVMONDISR/W0hBORL disable on VDDIO.

0 BORL is enabled on VDDIO, i.e BOR circuit will be triggered if VDDIO goes lower than the lower BOR threshold of VDDIO.
1 BORL is disabled on VDDIO, i.e BOR circuit will not be triggered if VDDIO goes lower than the lower BOR threshold of VDDIO.

Reset type: SYSRSn

7-2RESERVEDR-00hReserved
1RESERVEDR/W0hReserved
0RESERVEDR/W0hReserved

11.5.2.8 CMPHPMXSEL Register (Offset = 8Eh) [Reset = 00000000h]

CMPHPMXSEL is shown in Figure 11-10 and described in Table 11-15.

Return to the Summary Table.

Bits to select one of the many sources on CompHP inputs. Refer to Pimux diagram for details.

Figure 11-10 CMPHPMXSEL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVEDRESERVEDRESERVED
R-0-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDCMP3HPMXSEL
R-0-0hR/W-0hR/W-0hR/W-0h
76543210
CMP3HPMXSELCMP2HPMXSELCMP1HPMXSEL
R/W-0hR/W-0hR/W-0h
Table 11-15 CMPHPMXSEL Register Field Descriptions
BitFieldTypeResetDescription
31-22RESERVEDR-00hReserved
21-19RESERVEDR/W0hReserved
18-16RESERVEDR/W0hReserved
15RESERVEDR-00hReserved
14-12RESERVEDR/W0hReserved
11-9RESERVEDR/W0hReserved
8-6CMP3HPMXSELR/W0hCMP3HPMXSEL bits, Refer to the Analog Subsystem chapter
Note: Only values 0 to 4 and '6' are valid, rest are reserved

Reset type: XRSn

5-3CMP2HPMXSELR/W0hCMP2HPMXSEL bits, Refer to the Analog Subsystem chapter
Note: Only values 0 to 6 are valid, rest are reserved

Reset type: XRSn

2-0CMP1HPMXSELR/W0hCMP1HPMXSEL bits, Refer to the Analog Subsystem chapter
Note: Only values 0 to 4 and '6' are valid, rest are reserved

Reset type: XRSn

11.5.2.9 CMPLPMXSEL Register (Offset = 90h) [Reset = 00000000h]

CMPLPMXSEL is shown in Figure 11-11 and described in Table 11-16.

Return to the Summary Table.

Bits to select one of the many sources on CompLP inputs. Refer to Pimux diagram for details.

Figure 11-11 CMPLPMXSEL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVEDRESERVEDRESERVED
R-0-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDCMP3LPMXSEL
R-0-0hR/W-0hR/W-0hR/W-0h
76543210
CMP3LPMXSELCMP2LPMXSELCMP1LPMXSEL
R/W-0hR/W-0hR/W-0h
Table 11-16 CMPLPMXSEL Register Field Descriptions
BitFieldTypeResetDescription
31-22RESERVEDR-00hReserved
21-19RESERVEDR/W0hReserved
18-16RESERVEDR/W0hReserved
15RESERVEDR-00hReserved
14-12RESERVEDR/W0hReserved
11-9RESERVEDR/W0hReserved
8-6CMP3LPMXSELR/W0hCMP3LPMXSEL bits, Refer to the Analog Subsystem chapter
Note: Only values 0 to 4 and '6' are valid, rest are reserved

Reset type: XRSn

5-3CMP2LPMXSELR/W0hCMP2LPMXSEL bits, Refer to the Analog Subsystem chapter
Note: Only values 0 to 6 are valid, rest are reserved

Reset type: XRSn

2-0CMP1LPMXSELR/W0hCMP1LPMXSEL bits, Refer to the Analog Subsystem chapter
Note: Only values 0 to 4 and '6' are valid, rest are reserved

Reset type: XRSn

11.5.2.10 CMPHNMXSEL Register (Offset = 92h) [Reset = 0000h]

CMPHNMXSEL is shown in Figure 11-12 and described in Table 11-17.

Return to the Summary Table.

Bits to select one of the many sources on CompHN inputs. Refer to Pimux diagram for details.

Figure 11-12 CMPHNMXSEL Register
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDCMP3HNMXSELCMP2HNMXSELCMP1HNMXSEL
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 11-17 CMPHNMXSEL Register Field Descriptions
BitFieldTypeResetDescription
15-7RESERVEDR-00hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2CMP3HNMXSELR/W0hCMP3HNMXSEL bits, Refer to the Analog Subsystem chapter

Reset type: XRSn

1CMP2HNMXSELR/W0hCMP2HNMXSEL bits, Refer to the Analog Subsystem chapter

Reset type: XRSn

0CMP1HNMXSELR/W0hCMP1HNMXSEL bits, Refer to the Analog Subsystem chapter

Reset type: XRSn

11.5.2.11 CMPLNMXSEL Register (Offset = 93h) [Reset = 0000h]

CMPLNMXSEL is shown in Figure 11-13 and described in Table 11-18.

Return to the Summary Table.

Bits to select one of the many sources on CompLN inputs. Refer to Pimux diagram for details.

Figure 11-13 CMPLNMXSEL Register
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDCMP3LNMXSELCMP2LNMXSELCMP1LNMXSEL
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 11-18 CMPLNMXSEL Register Field Descriptions
BitFieldTypeResetDescription
15-7RESERVEDR-00hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2CMP3LNMXSELR/W0hCMP3LNMXSEL bits, Refer to the Analog Subsystem chapter

Reset type: XRSn

1CMP2LNMXSELR/W0hCMP2LNMXSEL bits, Refer to the Analog Subsystem chapter

Reset type: XRSn

0CMP1LNMXSELR/W0hCMP1LNMXSEL bits, Refer to the Analog Subsystem chapter

Reset type: XRSn

11.5.2.12 ADCDACLOOPBACK Register (Offset = 94h) [Reset = 00000000h]

ADCDACLOOPBACK is shown in Figure 11-14 and described in Table 11-19.

Return to the Summary Table.

Enabble loopback from DAC to ADCs

Figure 11-14 ADCDACLOOPBACK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDRESERVEDENLB2ADCA
R-0-0hR/W-0hR/W-0hR/W-0h
Table 11-19 ADCDACLOOPBACK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hWrite Key. Writes to this register must include the value 0xA5A5 in the KEY bit field to take effect. Otherwise the register will remain as it was prior to the write attempt. Reads will return a 0.

Reset type: XRSn

15-3RESERVEDR-00hReserved
2RESERVEDR/W0hReserved
1RESERVEDR/W0hReserved
0ENLB2ADCAR/W0h1 Loops back COMPDAC output to ADCA.
0 Loop back is broken.

Note: Setting this bit to 1, will override the CHSEL specification for the ADC. ADC would sample COMPDAC output irrespective of the value of CHSEL.

Reset type: XRSn

11.5.2.13 CMPSSCTL Register (Offset = 97h) [Reset = 0000h]

CMPSSCTL is shown in Figure 11-15 and described in Table 11-20.

Return to the Summary Table.

CMPSS Control Register

Figure 11-15 CMPSSCTL Register
15141312111098
CMPSSCTLENRESERVED
R/W-0hR-0-0h
76543210
RESERVEDCMP3LDACOUTEN
R-0-0hR/W-0h
Table 11-20 CMPSSCTL Register Field Descriptions
BitFieldTypeResetDescription
15CMPSSCTLENR/W0h0 - Rest of the configurations in this register are disabled
1 - Rest of the configuration in this register are enabled
This bit is added for safety purpose. The configurations in this register are donot care if this bit is '0'

Reset type: SYSRSn

14-1RESERVEDR-00hReserved
0CMP3LDACOUTENR/W0h0 - CMPSS3.COMPL is enabled and associated DAC will act as reference for comparator.
1 - CMPSS3.COMPL is disabled. Associated DAC will act as a general purpose DAC

Reset type: SYSRSn

11.5.2.14 LOCK Register (Offset = 9Ah) [Reset = 00000000h]

LOCK is shown in Figure 11-16 and described in Table 11-21.

Return to the Summary Table.

Lock Register

Figure 11-16 LOCK Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDCMPSSCTLRESERVEDCMPLNMXSEL
R-0-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
76543210
CMPHNMXSELCMPLPMXSELCMPHPMXSELRESERVEDRESERVEDVMONCTLANAREFCTLTSNSCTL
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 11-21 LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-11RESERVEDR-00hReserved
10CMPSSCTLR/WSonce0hCMPSSCTL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

9RESERVEDR/WSonce0hReserved
8CMPLNMXSELR/WSonce0hCMPLNMXSEL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

7CMPHNMXSELR/WSonce0hCMPHNMXSEL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

6CMPLPMXSELR/WSonce0hCMPLPMXSEL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

5CMPHPMXSELR/WSonce0hCMPHPMXSEL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

4RESERVEDR/WSonce0hReserved
3RESERVEDR/WSonce0hReserved
2VMONCTLR/WSonce0hVMONCTL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

1ANAREFCTLR/WSonce0hANAREFCTL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

0TSNSCTLR/WSonce0hTSNSCTL Register Lock. Setting this bit will disable any future write to the respective register. This bit can only be cleared by a reset.

Reset type: SYSRSn

11.5.2.15 AGPIOCTRLA Register (Offset = 120h) [Reset = 00000000h]

AGPIOCTRLA is shown in Figure 11-17 and described in Table 11-22.

Return to the Summary Table.

AGPIO Control Register

Figure 11-17 AGPIOCTRLA Register
3130292827262524
RESERVEDRESERVEDRESERVEDGPIO28RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDGPIO13GPIO12RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 11-22 AGPIOCTRLA Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR/W0hReserved
30RESERVEDR/W0hReserved
29RESERVEDR/W0hReserved
28GPIO28R/W0hOne time configuration for GPIO28 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

27RESERVEDR/W0hReserved
26RESERVEDR/W0hReserved
25RESERVEDR/W0hReserved
24RESERVEDR/W0hReserved
23RESERVEDR/W0hReserved
22RESERVEDR/W0hReserved
21RESERVEDR/W0hReserved
20RESERVEDR/W0hReserved
19RESERVEDR/W0hReserved
18RESERVEDR/W0hReserved
17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15RESERVEDR/W0hReserved
14RESERVEDR/W0hReserved
13GPIO13R/W0hOne time configuration for GPIO13 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

12GPIO12R/W0hOne time configuration for GPIO12 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1RESERVEDR/W0hReserved
0RESERVEDR/W0hReserved

11.5.2.16 AGPIOCTRLH Register (Offset = 12Eh) [Reset = 00000000h]

AGPIOCTRLH is shown in Figure 11-18 and described in Table 11-23.

Return to the Summary Table.

AGPIO Control Register

Figure 11-18 AGPIOCTRLH Register
3130292827262524
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVEDGPIO243GPIO242RESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDGPIO230RESERVEDGPIO228GPIO227GPIO226RESERVEDGPIO224
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 11-23 AGPIOCTRLH Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR/W0hReserved
30RESERVEDR/W0hReserved
29RESERVEDR/W0hReserved
28RESERVEDR/W0hReserved
27RESERVEDR/W0hReserved
26RESERVEDR/W0hReserved
25RESERVEDR/W0hReserved
24RESERVEDR/W0hReserved
23RESERVEDR/W0hReserved
22RESERVEDR/W0hReserved
21RESERVEDR/W0hReserved
20RESERVEDR/W0hReserved
19GPIO243R/W0hOne time configuration for GPIO243 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

18GPIO242R/W0hOne time configuration for GPIO242 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15RESERVEDR/W0hReserved
14RESERVEDR/W0hReserved
13RESERVEDR/W0hReserved
12RESERVEDR/W0hReserved
11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6GPIO230R/W0hOne time configuration for GPIO230 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

5RESERVEDR/W0hReserved
4GPIO228R/W0hOne time configuration for GPIO228 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

3GPIO227R/W0hOne time configuration for GPIO227 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

2GPIO226R/W0hOne time configuration for GPIO226 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

1RESERVEDR/W0hReserved
0GPIO224R/W0hOne time configuration for GPIO224 to decide whether AGPIO functionality is enabled
0 - AGPIO functionality is disabled
1 - AGPIO functionality is enabled

Reset type: XRSn

11.5.2.17 GPIOINENACTRL Register (Offset = 140h) [Reset = 00000007h]

GPIOINENACTRL is shown in Figure 11-19 and described in Table 11-24.

Return to the Summary Table.

GPIOINENACTRL Control Register

Figure 11-19 GPIOINENACTRL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDGPIO45GPIO44GPIO43
R-0-0hR/W-1hR/W-1hR/W-1h
Table 11-24 GPIOINENACTRL Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2GPIO45R/W1hOne time configuration for GPIO45 to decide whether Input buffer (INENA control) is enabled or disabled
0 - Input buffer is disabled
1 - Input buffer is enabled

Reset type: XRSn

1GPIO44R/W1hOne time configuration for GPIO44 to decide whether Input buffer (INENA control) is enabled or disabled
0 - Input buffer is disabled
1 - Input buffer is enabled

Reset type: XRSn

0GPIO43R/W1hOne time configuration for GPIO43 to decide whether Input buffer (INENA control) is enabled or disabled
0 - Input buffer is disabled
1 - Input buffer is enabled

Reset type: XRSn