SPRUJD3A July   2025  â€“ October 2025 F28E120SB , F28E120SC

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000â„¢ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studioâ„¢ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit (FPU)
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Power-On Reset (POR)
      4. 3.4.4  Brown-Out-Reset (BOR)
      5. 3.4.5  Watchdog Reset (WDRS)
      6. 3.4.6  NMI Watchdog Reset (NMIWDRS)
      7. 3.4.7  Debugger Reset (SYSRS)
      8. 3.4.8  DCSM Safe Code Copy Reset (SCCRESET)
      9. 3.4.9  Simulate External Reset (SIMRESET.XRS)
      10. 3.4.10 Simulate CPU Reset (SIMRESET_CPU1RS)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
      6. 3.5.6 PIE Interrupt Priority
        1. 3.5.6.1 Channel Priority
        2. 3.5.6.2 Group Priority
      7. 3.5.7 System Error
      8. 3.5.8 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection Logic
        2. 3.6.3.2 Flash Uncorrectable ECC Error
        3. 3.6.3.3 Software-Forced Error
      4. 3.6.4 Illegal Instruction Trap (ITRAP)
      5. 3.6.5 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (SYSOSC)
        2. 3.7.1.2 Backup Wide-Range Oscillator (WROSC)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low Power-Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
    11. 3.11 Memory Controller Module
      1. 3.11.1 Dedicated RAM (Mx RAM)
      2. 3.11.2 Global Shared RAM (GSx RAM)
      3. 3.11.3 Access Arbitration
      4. 3.11.4 Memory Error Detection, Correction, and Error Handling
        1. 3.11.4.1 Error Detection and Correction
        2. 3.11.4.2 Error Handling
      5. 3.11.5 Application Test Hooks for Error Detection and Correction
      6. 3.11.6 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 System Control Register Configuration Restrictions
    14. 3.14 Software
      1. 3.14.1 SYSCTL Examples
        1. 3.14.1.1 Missing clock detection (MCD)
        2. 3.14.1.2 XCLKOUT (External Clock Output) Configuration
    15. 3.15 SYSCTRL Registers
      1. 3.15.1  SYSCTRL Base Address Table
      2. 3.15.2  CPUTIMER_REGS Registers
      3. 3.15.3  PIE_CTRL_REGS Registers
      4. 3.15.4  WD_REGS Registers
      5. 3.15.5  NMI_INTRUPT_REGS Registers
      6. 3.15.6  XINT_REGS Registers
      7. 3.15.7  SYNC_SOC_REGS Registers
      8. 3.15.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.15.9  DEV_CFG_REGS Registers
      10. 3.15.10 CLK_CFG_REGS Registers
      11. 3.15.11 CPU_SYS_REGS Registers
      12. 3.15.12 SYS_STATUS_REGS Registers
      13. 3.15.13 MEM_CFG_REGS Registers
      14. 3.15.14 MEMORY_ERROR_REGS Registers
      15. 3.15.15 ROM_WAIT_STATE_REGS Registers
      16. 3.15.16 TEST_ERROR_REGS Registers
      17. 3.15.17 UID_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
      2. 4.5.2 Emulation Boot Flow
      3. 4.5.3 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Secure Flash Boot
        1. 4.7.4.1 Secure Flash CPU1 Linker File Example
      5. 4.7.5  Memory Maps
        1. 4.7.5.1 Boot ROM Memory Maps
        2. 4.7.5.2 Reserved RAM Memory Maps
      6. 4.7.6  ROM Tables
      7. 4.7.7  Boot Modes and Loaders
        1. 4.7.7.1 Boot Modes
          1. 4.7.7.1.1 Flash Boot
          2. 4.7.7.1.2 RAM Boot
          3. 4.7.7.1.3 Wait Boot
        2. 4.7.7.2 Bootloaders
          1. 4.7.7.2.1 SCI Boot Mode
          2. 4.7.7.2.2 SPI Boot Mode
          3. 4.7.7.2.3 I2C Boot Mode
          4. 4.7.7.2.4 Parallel Boot Mode
      8. 4.7.8  GPIO Assignments
      9. 4.7.9  Secure ROM Function APIs
      10. 4.7.10 Clock Initializations
      11. 4.7.11 Boot Status Information
        1. 4.7.11.1 Booting Status
      12. 4.7.12 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Bootloader Data Stream Structure
        1. 4.8.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Execute-Only Protection
      5. 5.2.5 Password Lock
      6. 5.2.6 JTAGLOCK
      7. 5.2.7 Link Pointer and Zone Select
      8. 5.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
      1. 5.6.1 RAMOPEN
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Wrapper
    4. 6.4  Flash and OTP Memory Performance
    5. 6.5  Flash Read Interface
      1. 6.5.1 C28x-Flash Read Interface
        1. 6.5.1.1 Standard Read Mode
        2. 6.5.1.2 Prefetch Mode
        3. 6.5.1.3 Data Cache
        4. 6.5.1.4 Flash Read Operation
    6. 6.6  Flash Erase and Program
      1. 6.6.1 Erase
      2. 6.6.2 Program
      3. 6.6.3 Verify
    7. 6.7  Error Correction Code (ECC) Protection
      1. 6.7.1 Single-Bit Data Error
      2. 6.7.2 Uncorrectable Error
      3. 6.7.3 ECC Logic Self Test
    8. 6.8  Reserved Locations Within Flash and OTP
    9. 6.9  Migrating an Application from RAM to Flash
    10. 6.10 Procedure to Change the Flash Control Registers
    11. 6.11 Software
      1. 6.11.1 FLASH Examples
        1. 6.11.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
    12. 6.12 FLASH Registers
      1. 6.12.1 FLASH Base Address Table
      2. 6.12.2 FLASH_CTRL_REGS Registers
      3. 6.12.3 FLASH_ECC_REGS Registers
  9. Dual-Clock Comparator (DCC)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 Block Diagram
    2. 7.2 Module Operation
      1. 7.2.1 Configuring DCC Counters
      2. 7.2.2 Single-Shot Measurement Mode
      3. 7.2.3 Continuous Monitoring Mode
      4. 7.2.4 Error Conditions
    3. 7.3 Interrupts
    4. 7.4 Software
      1. 7.4.1 DCC Examples
        1. 7.4.1.1 DCC Single shot Clock verification
        2. 7.4.1.2 DCC Single shot Clock measurement
        3. 7.4.1.3 DCC Continuous clock monitoring
        4. 7.4.1.4 DCC Continuous clock monitoring
        5. 7.4.1.5 DCC Detection of clock failure
    5. 7.5 DCC Registers
      1. 7.5.1 DCC Base Address Table
      2. 7.5.2 DCC_REGS Registers
  10. General-Purpose Input/Output (GPIO)
    1. 8.1  Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2  Configuration Overview
    3. 8.3  Digital Inputs on ADC Pins (AIOs)
    4. 8.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 8.5  Digital General-Purpose I/O Control
    6. 8.6  Input Qualification
      1. 8.6.1 No Synchronization (Asynchronous Input)
      2. 8.6.2 Synchronization to SYSCLKOUT Only
      3. 8.6.3 Qualification Using a Sampling Window
    7. 8.7  GPIO and Peripheral Muxing
      1. 8.7.1 GPIO Muxing
      2. 8.7.2 Peripheral Muxing
    8. 8.8  Internal Pullup Configuration Requirements
    9. 8.9  Open-Drain Configuration Requirements
    10. 8.10 Software
      1. 8.10.1 GPIO Examples
        1. 8.10.1.1 Device GPIO Setup
        2. 8.10.1.2 Device GPIO Toggle
        3. 8.10.1.3 Device GPIO Interrupt
        4. 8.10.1.4 External Interrupt (XINT)
      2. 8.10.2 LED Examples
    11. 8.11 GPIO Registers
      1. 8.11.1 GPIO Base Address Table
      2. 8.11.2 GPIO_CTRL_REGS Registers
      3. 8.11.3 GPIO_DATA_REGS Registers
      4. 8.11.4 GPIO_DATA_READ_REGS Registers
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR
    2. 9.2 MCPWM and GPIO Output X-BAR
      1. 9.2.1 MCPWM X-BAR
        1. 9.2.1.1 MCPWM X-BAR Architecture
      2. 9.2.2 GPIO Output X-BAR
        1. 9.2.2.1 GPIO Output X-BAR Architecture
      3. 9.2.3 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 PWM_XBAR_REGS Registers
      5. 9.3.5 OUTPUT_XBAR_REGS Registers
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
  13. 11Analog Subsystem
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Digital Inputs on ADC Pins (AIOs)
    3. 11.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    4. 11.4 Analog Pins and Internal Connections
    5. 11.5 ASBSYS Registers
      1. 11.5.1 ASBSYS Base Address Table
      2. 11.5.2 ANALOG_SUBSYS_REGS Registers
  14. 12Analog-to-Digital Converter (ADC)
    1. 12.1  Introduction
      1. 12.1.1 Features
      2. 12.1.2 ADC Related Collateral
      3. 12.1.3 Block Diagram
    2. 12.2  ADC Configurability
      1. 12.2.1 ADC Clock Configuration
      2. 12.2.2 Resolution
      3. 12.2.3 Voltage Reference
        1. 12.2.3.1 External Reference Mode
        2. 12.2.3.2 Internal Reference Mode
        3. 12.2.3.3 Selecting Reference Mode
      4. 12.2.4 Signal Mode
        1. 12.2.4.1 Expected Conversion Results
        2. 12.2.4.2 Interpreting Conversion Results
    3. 12.3  SOC Principle of Operation
      1. 12.3.1 SOC Configuration
      2. 12.3.2 Trigger Operation
        1. 12.3.2.1 Trigger Repeaters
          1. 12.3.2.1.1 Oversampling Mode
          2. 12.3.2.1.2 Re-trigger Spread
          3. 12.3.2.1.3 Trigger Repeater Configuration
            1. 12.3.2.1.3.1 Register Shadow Updates
          4. 12.3.2.1.4 Re-Trigger Logic
          5. 12.3.2.1.5 Multi-Path Triggering Behavior
      3. 12.3.3 ADC Acquisition (Sample and Hold) Window
      4. 12.3.4 Sample Capacitor Reset
      5. 12.3.5 ADC Input Models
      6. 12.3.6 Channel Selection
    4. 12.4  SOC Configuration Examples
      1. 12.4.1 Single Conversion from MCPWM Trigger
      2. 12.4.2 Multiple Conversions from CPU Timer Trigger
      3. 12.4.3 Software Triggering of SOCs
    5. 12.5  ADC Conversion Priority
    6. 12.6  EOC and Interrupt Operation
      1. 12.6.1 Interrupt Overflow
      2. 12.6.2 Continue to Interrupt Mode
      3. 12.6.3 Early Interrupt Configuration Mode
    7. 12.7  Post-Processing Blocks
      1. 12.7.1 PPB Offset Correction
      2. 12.7.2 PPB Error Calculation
      3. 12.7.3 PPB Limit Detection and Zero-Crossing Detection
    8. 12.8  Opens/Shorts Detection Circuit (OSDETECT)
      1. 12.8.1 Open Short Detection Implementation
      2. 12.8.2 Detecting an Open Input Pin
      3. 12.8.3 Detecting a Shorted Input Pin
    9. 12.9  Power-Up Sequence
    10. 12.10 ADC Calibration
      1. 12.10.1 ADC Zero Offset Calibration
    11. 12.11 ADC Timings
      1. 12.11.1 ADC Timing Diagrams
      2. 12.11.2 Post-Processing Block Timings
    12. 12.12 Additional Information
      1. 12.12.1 Choosing an Acquisition Window Duration
      2. 12.12.2 Result Register Mapping
      3. 12.12.3 Internal Temperature Sensor
      4. 12.12.4 Designing an External Reference Circuit
      5. 12.12.5 ADC-DAC Loopback Testing
      6. 12.12.6 Internal Test Mode
    13. 12.13 Software
      1. 12.13.1 ADC Examples
        1. 12.13.1.1 ADC Software Triggering
        2. 12.13.1.2 ADC MCPWM Triggering
        3. 12.13.1.3 ADC Temperature Sensor Conversion
        4. 12.13.1.4 ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        5. 12.13.1.5 ADC PPB Offset (adc_ppb_offset)
        6. 12.13.1.6 ADC PPB Limits (adc_ppb_limits)
        7. 12.13.1.7 ADC SOC Oversampling
        8. 12.13.1.8 ADC Trigger Repeater Oversampling
    14. 12.14 ADC Registers
      1. 12.14.1 ADC Base Address Table
      2. 12.14.2 ADC_LITE_RESULT_REGS Registers
      3. 12.14.3 ADC_LITE_REGS Registers
  15. 13Comparator Subsystem (CMPSS)
    1. 13.1 Introduction
      1. 13.1.1 Features
      2. 13.1.2 CMPSS Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2 Comparator
    3. 13.3 Reference DAC
    4. 13.4 Digital Filter
      1. 13.4.1 Filter Initialization Sequence
    5. 13.5 Using the CMPSS
      1. 13.5.1 LATCHCLR, and MCPWMSYNCPER Signals
      2. 13.5.2 Synchronizer, Digital Filter, and Latch Delays
      3. 13.5.3 Calibrating the CMPSS
      4. 13.5.4 Enabling and Disabling the CMPSS Clock
    6. 13.6 CMPSS DAC Output
    7. 13.7 Software
      1. 13.7.1 CMPSS Examples
      2. 13.7.2 CMPSS_LITE Examples
        1. 13.7.2.1 CMPSSLITE Asynchronous Trip
    8. 13.8 CMPSS Registers
      1. 13.8.1 CMPSS Base Address Table
      2. 13.8.2 CMPSS_LITE_REGS Registers
  16. 14Programmable Gain Amplifier (PGA)
    1. 14.1  Programmable Gain Amplifier (PGA) Overview
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2  Linear Output Range
    3. 14.3  Gain Values
    4. 14.4  Modes of Operation
      1. 14.4.1 Buffer Mode
      2. 14.4.2 Standalone Mode
      3. 14.4.3 Non-inverting Mode
      4. 14.4.4 Subtractor Mode
    5. 14.5  External Filtering
      1. 14.5.1 Low-Pass Filter Using Internal Filter Resistor and External Capacitor
      2. 14.5.2 Single Pole Low-Pass Filter Using Internal Gain Resistor and External Capacitor
    6. 14.6  Error Calibration
      1. 14.6.1 Offset Error
      2. 14.6.2 Gain Error
    7. 14.7  Chopping Feature
    8. 14.8  Enabling and Disabling the PGA Clock
    9. 14.9  Lock Register
    10. 14.10 Analog Front-End Integration
      1. 14.10.1 Analog-to-Digital Converter (ADC)
        1. 14.10.1.1 Unfiltered Acquisition Window
        2. 14.10.1.2 Filtered Acquisition Window
      2. 14.10.2 Comparator Subsystem (CMPSS)
      3. 14.10.3 Alternate Functions
    11. 14.11 Examples
      1. 14.11.1 Non-Inverting Amplifier Using Non-Inverting Mode
      2. 14.11.2 Buffer Mode
      3. 14.11.3 Low-Side Current Sensing
      4. 14.11.4 Bidirectional Current Sensing
    12. 14.12 Software
      1. 14.12.1 PGA Examples
        1. 14.12.1.1 PGA CMPSSDAC-ADC External Loopback Example
    13. 14.13 PGA Registers
      1. 14.13.1 PGA Base Address Table
      2. 14.13.2 PGA_REGS Registers
  17. 15Multi-Channel Pulse Width Modulator (MCPWM)
    1. 15.1  Introduction
      1. 15.1.1 PWM Related Collateral
      2. 15.1.2 Submodule Overview
    2. 15.2  Configuring Device Pins
    3. 15.3  MCPWM Modules Overview
    4. 15.4  Time-Base (TB) Submodule
      1. 15.4.1 Purpose of the Time-Base Submodule
      2. 15.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 15.4.3 Calculating PWM Period and Frequency
        1. 15.4.3.1 Time-Base Period Shadow Register
        2. 15.4.3.2 Time-Base Clock Synchronization
        3. 15.4.3.3 Time-Base Counter Synchronization
        4. 15.4.3.4 MCPWM SYNC Selection
      4. 15.4.4 Phase Locking the Time-Base Clocks of Multiple MCPWM Modules
      5. 15.4.5 Time-Base Counter Modes and Timing Waveforms
      6. 15.4.6 Global Load
        1. 15.4.6.1 One-Shot Load Mode
    5. 15.5  Counter-Compare (CC) Submodule
      1. 15.5.1 Purpose of the Counter-Compare Submodule
      2. 15.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 15.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 15.5.4 Count Mode Timing Waveforms
    6. 15.6  Action-Qualifier (AQ) Submodule
      1. 15.6.1 Purpose of the Action-Qualifier Submodule
      2. 15.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 15.6.3 Action-Qualifier Event Priority
      4. 15.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 15.6.5 Configuration Requirements for Common Waveforms
    7. 15.7  Dead-Band Generator (DB) Submodule
      1. 15.7.1 Purpose of the Dead-Band Submodule
      2. 15.7.2 Dead-Band Submodule Additional Operating Modes
      3. 15.7.3 Operational Highlights for the Dead-Band Submodule
    8. 15.8  Trip-Zone (TZ) Submodule
      1. 15.8.1 Purpose of the Trip-Zone Submodule
      2. 15.8.2 Operational Highlights for the Trip-Zone Submodule
        1. 15.8.2.1 Trip-Zone Configurations
      3. 15.8.3 Generating Trip Event Interrupts
    9. 15.9  Event-Trigger (ET) Submodule
      1. 15.9.1 Operational Overview of the MCPWM Event-Trigger Submodule
    10. 15.10 PWM Crossbar (X-BAR)
    11. 15.11 Software
      1. 15.11.1 MCPWM Examples
        1. 15.11.1.1 MCPWM Basic PWM Generation and Updates
        2. 15.11.1.2 MCPWM Basic PWM Generation and Updates
        3. 15.11.1.3 MCPWM Basic PWM generation With DeadBand
        4. 15.11.1.4 MCPWM Basic PWM Generation and Updates without Sysconfig
        5. 15.11.1.5 MCPWM PWM Tripzone Feature Showcase
        6. 15.11.1.6 MCPWM Global Load Feature Showcase
        7. 15.11.1.7 MCPWM DMA Configuration for Dynamic PWM Control
    12. 15.12 MCPWM Registers
      1. 15.12.1 MCPWM Base Address Table
      2. 15.12.2 MCPWM_6CH_REGS Registers
      3. 15.12.3 MCPWM_2CH_REGS Registers
  18. 16Enhanced Capture (eCAP)
    1. 16.1 Introduction
      1. 16.1.1 Features
      2. 16.1.2 ECAP Related Collateral
    2. 16.2 Description
    3. 16.3 Configuring Device Pins for the eCAP
    4. 16.4 Capture and APWM Operating Mode
    5. 16.5 Capture Mode Description
      1. 16.5.1 Event Prescaler
      2. 16.5.2 Edge Polarity Select and Qualifier
      3. 16.5.3 Continuous/One-Shot Control
      4. 16.5.4 32-Bit Counter and Phase Control
      5. 16.5.5 CAP1-CAP4 Registers
      6. 16.5.6 eCAP Synchronization
        1. 16.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 16.5.7 Interrupt Control
      8. 16.5.8 Shadow Load and Lockout Control
      9. 16.5.9 APWM Mode Operation
    6. 16.6 Application of the eCAP Module
      1. 16.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 16.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 16.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 16.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 16.7 Application of the APWM Mode
      1. 16.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 16.8 Software
      1. 16.8.1 ECAP Examples
        1. 16.8.1.1 eCAP APWM Example
        2. 16.8.1.2 eCAP Capture PWM Example
    9. 16.9 ECAP Registers
      1. 16.9.1 ECAP Base Address Table
      2. 16.9.2 ECAP_REGS Registers
  19. 17Enhanced Quadrature Encoder Pulse (eQEP)
    1. 17.1  Introduction
      1. 17.1.1 EQEP Related Collateral
    2. 17.2  Configuring Device Pins
    3. 17.3  Description
      1. 17.3.1 EQEP Inputs
      2. 17.3.2 Functional Description
      3. 17.3.3 eQEP Memory Map
    4. 17.4  Quadrature Decoder Unit (QDU)
      1. 17.4.1 Position Counter Input Modes
        1. 17.4.1.1 Quadrature Count Mode
        2. 17.4.1.2 Direction-Count Mode
        3. 17.4.1.3 Up-Count Mode
        4. 17.4.1.4 Down-Count Mode
      2. 17.4.2 eQEP Input Polarity Selection
      3. 17.4.3 Position-Compare Sync Output
    5. 17.5  Position Counter and Control Unit (PCCU)
      1. 17.5.1 Position Counter Operating Modes
        1. 17.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 17.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 17.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 17.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 17.5.2 Position Counter Latch
        1. 17.5.2.1 Index Event Latch
        2. 17.5.2.2 Strobe Event Latch
      3. 17.5.3 Position Counter Initialization
      4. 17.5.4 eQEP Position-compare Unit
    6. 17.6  eQEP Edge Capture Unit
    7. 17.7  eQEP Watchdog
    8. 17.8  eQEP Unit Timer Base
    9. 17.9  QMA Module
      1. 17.9.1 Modes of Operation
        1. 17.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 17.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 17.9.2 Interrupt and Error Generation
    10. 17.10 eQEP Interrupt Structure
    11. 17.11 Software
      1. 17.11.1 EQEP Examples
        1. 17.11.1.1 Frequency Measurement Using eQEP
        2. 17.11.1.2 Position and Speed Measurement Using eQEP
        3. 17.11.1.3 Frequency Measurement Using eQEP via unit timeout interrupt
        4. 17.11.1.4 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 17.12 EQEP Registers
      1. 17.12.1 EQEP Base Address Table
      2. 17.12.2 EQEP_REGS Registers
  20. 18Universal Asynchronous Receiver/Transmitter (UART)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 Block Diagram
    2. 18.2 Functional Description
      1. 18.2.1 Transmit and Receive Logic
      2. 18.2.2 Baud-Rate Generation
      3. 18.2.3 Data Transmission
      4. 18.2.4 Serial IR (SIR)
      5. 18.2.5 9-Bit UART Mode
      6. 18.2.6 FIFO Operation
      7. 18.2.7 Interrupts
      8. 18.2.8 Loopback Operation
      9. 18.2.9 DMA Operation
        1. 18.2.9.1 Receiving Data Using UART with DMA
        2. 18.2.9.2 Transmitting Data Using UART with DMA
    3. 18.3 Initialization and Configuration
    4. 18.4 Software
      1. 18.4.1 UART Examples
        1. 18.4.1.1 UART Echoback
        2. 18.4.1.2 UART Loopback
        3. 18.4.1.3 UART Loopback with interrupt
        4. 18.4.1.4 UART Digital Loopback with DMA
    5. 18.5 UART Registers
      1. 18.5.1 UART Base Address Table
      2. 18.5.2 UART_REGS Registers
      3. 18.5.3 UART_REGS_WRITE Registers
  21. 19Serial Peripheral Interface (SPI)
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 System-Level Integration
      1. 19.2.1 SPI Module Signals
      2. 19.2.2 Configuring Device Pins
        1. 19.2.2.1 GPIOs Required for High-Speed Mode
      3. 19.2.3 SPI Interrupts
      4. 19.2.4 DMA Support
    3. 19.3 SPI Operation
      1. 19.3.1  Introduction to Operation
      2. 19.3.2  Controller Mode
      3. 19.3.3  Peripheral Mode
      4. 19.3.4  Data Format
        1. 19.3.4.1 Transmission of Bit from SPIRXBUF
      5. 19.3.5  Baud Rate Selection
        1. 19.3.5.1 Baud Rate Determination
        2. 19.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 19.3.6  SPI Clocking Schemes
      7. 19.3.7  SPI FIFO Description
      8. 19.3.8  SPI DMA Transfers
        1. 19.3.8.1 Transmitting Data Using SPI with DMA
        2. 19.3.8.2 Receiving Data Using SPI with DMA
      9. 19.3.9  SPI High-Speed Mode
      10. 19.3.10 SPI 3-Wire Mode Description
    4. 19.4 Programming Procedure
      1. 19.4.1 Initialization Upon Reset
      2. 19.4.2 Configuring the SPI
      3. 19.4.3 Configuring the SPI for High-Speed Mode
      4. 19.4.4 Data Transfer Example
      5. 19.4.5 SPI 3-Wire Mode Code Examples
        1. 19.4.5.1 3-Wire Controller Mode Transmit
        2.       679
          1. 19.4.5.2.1 3-Wire Controller Mode Receive
        3.       681
          1. 19.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       683
          1. 19.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 19.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 19.5 Software
      1. 19.5.1 SPI Examples
        1. 19.5.1.1 SPI Digital Loopback
        2. 19.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 19.5.1.3 SPI Digital Loopback with DMA
        4. 19.5.1.4 SPI EEPROM
        5. 19.5.1.5 SPI DMA EEPROM
    6. 19.6 SPI Registers
      1. 19.6.1 SPI Base Address Table
      2. 19.6.2 SPI_REGS Registers
  22. 20Inter-Integrated Circuit Module (I2C)
    1. 20.1 Introduction
      1. 20.1.1 I2C Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Features Not Supported
      4. 20.1.4 Functional Overview
      5. 20.1.5 Clock Generation
      6. 20.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 20.1.6.1 Formula for the Controller Clock Period
    2. 20.2 Configuring Device Pins
    3. 20.3 I2C Module Operational Details
      1. 20.3.1  Input and Output Voltage Levels
      2. 20.3.2  Selecting Pullup Resistors
      3. 20.3.3  Data Validity
      4. 20.3.4  Operating Modes
      5. 20.3.5  I2C Module START and STOP Conditions
      6. 20.3.6  Non-repeat Mode versus Repeat Mode
      7. 20.3.7  Serial Data Formats
        1. 20.3.7.1 7-Bit Addressing Format
        2. 20.3.7.2 10-Bit Addressing Format
        3. 20.3.7.3 Free Data Format
        4. 20.3.7.4 Using a Repeated START Condition
      8. 20.3.8  Clock Synchronization
      9. 20.3.9  Clock Stretching
      10. 20.3.10 Arbitration
      11. 20.3.11 Digital Loopback Mode
      12. 20.3.12 NACK Bit Generation
    4. 20.4 Interrupt Requests Generated by the I2C Module
      1. 20.4.1 Basic I2C Interrupt Requests
      2. 20.4.2 I2C FIFO Interrupts
    5. 20.5 Resetting or Disabling the I2C Module
    6. 20.6 Software
      1. 20.6.1 I2C Registers to Driverlib Functions
      2. 20.6.2 I2C Examples
        1. 20.6.2.1 C28x-I2C Library source file for FIFO interrupts
        2. 20.6.2.2 C28x-I2C Library source file for FIFO using polling
        3. 20.6.2.3 I2C Digital Loopback with FIFO Interrupts
        4. 20.6.2.4 I2C EEPROM
        5. 20.6.2.5 I2C EEPROM
        6. 20.6.2.6 I2C EEPROM
    7. 20.7 I2C Registers
      1. 20.7.1 I2C Base Address Table
      2. 20.7.2 I2C_REGS Registers
  23. 21Serial Communications Interface (SCI)
    1. 21.1  Introduction
      1. 21.1.1 Features
      2. 21.1.2 SCI Related Collateral
      3. 21.1.3 Block Diagram
    2. 21.2  Architecture
    3. 21.3  SCI Module Signal Summary
    4. 21.4  Configuring Device Pins
    5. 21.5  Multiprocessor and Asynchronous Communication Modes
    6. 21.6  SCI Programmable Data Format
    7. 21.7  SCI Multiprocessor Communication
      1. 21.7.1 Recognizing the Address Byte
      2. 21.7.2 Controlling the SCI TX and RX Features
      3. 21.7.3 Receipt Sequence
    8. 21.8  Idle-Line Multiprocessor Mode
      1. 21.8.1 Idle-Line Mode Steps
      2. 21.8.2 Block Start Signal
      3. 21.8.3 Wake-Up Temporary (WUT) Flag
        1. 21.8.3.1 Sending a Block Start Signal
      4. 21.8.4 Receiver Operation
    9. 21.9  Address-Bit Multiprocessor Mode
      1. 21.9.1 Sending an Address
    10. 21.10 SCI Communication Format
      1. 21.10.1 Receiver Signals in Communication Modes
      2. 21.10.2 Transmitter Signals in Communication Modes
    11. 21.11 SCI Port Interrupts
      1. 21.11.1 Break Detect
    12. 21.12 SCI Baud Rate Calculations
    13. 21.13 SCI Enhanced Features
      1. 21.13.1 SCI FIFO Description
      2. 21.13.2 SCI Auto-Baud
      3. 21.13.3 Autobaud-Detect Sequence
    14. 21.14 Software
      1. 21.14.1 SCI Examples
        1. 21.14.1.1 Tune Baud Rate via UART Example
        2. 21.14.1.2 SCI FIFO Digital Loop Back
        3. 21.14.1.3 SCI Digital Loop Back with Interrupts
        4. 21.14.1.4 SCI Echoback
        5. 21.14.1.5 stdout redirect example
    15. 21.15 SCI Registers
      1. 21.15.1 SCI Base Address Table
      2. 21.15.2 SCI_REGS Registers
  24. 22Revision History

CPU_SYS_REGS Registers

Table 3-125 lists the memory-mapped registers for the CPU_SYS_REGS registers. All register offset addresses not listed in Table 3-125 should be considered as reserved locations and the register contents should not be modified.

Table 3-125 CPU_SYS_REGS Registers
OffsetAcronymRegister NameWrite Protection
0hCPUSYSLOCKLock bit for CPUSYS registersEALLOW
2hPIEVERRADDRPIE Vector Fetch Error Address registerEALLOW
4hSIMRESETSimulated Reset Register
8hLPMCRLPM Control RegisterEALLOW
AhGPIOLPMSEL0GPIO LPM Wakeup select registersEALLOW
ChGPIOLPMSEL1GPIO LPM Wakeup select registersEALLOW
EhTMR2CLKCTLTimer2 Clock Measurement functionality control registerEALLOW
10hRESCCLRReset Cause Clear Register
12hRESCReset Cause register
14hCMPSSLPMSELCMPSS LPM Wakeup select registersEALLOW
16hCLKSTOPREQPeripheral Clock Stop Request Register
18hCLKSTOPACKPeripheral Clock Stop Ackonwledge Register
1AhUSER_REG1_SYSRSnSoftware Configurable registers reset by SYSRSn
1ChUSER_REG2_SYSRSnSoftware Configurable registers reset by SYSRSn
1EhUSER_REG1_XRSnSoftware Configurable registers reset by XRSn
20hUSER_REG2_XRSnSoftware Configurable registers reset by XRSn
22hUSER_REG1_PORESETnSoftware Configurable registers reset by PORESETn
24hUSER_REG2_PORESETnSoftware Configurable registers reset by PORESETn
26hUSER_REG3_PORESETnSoftware Configurable registers reset by PORESETn
28hUSER_REG4_PORESETnSoftware Configurable registers reset by PORESETn
3ChPERCLKCRPeripheral Clock Control

Complex bit access types are encoded to fit into small table cells. Table 3-126 shows the codes that are used for access types in this section.

Table 3-126 CPU_SYS_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

3.15.11.1 CPUSYSLOCK Register (Offset = 0h) [Reset = 00000000h]

CPUSYSLOCK is shown in Figure 3-105 and described in Table 3-127.

Return to the Summary Table.

Lock bit for CPUSYS registers
Notes:
[1] Any bit in this register, once set can only be cleared through a CPU1.SYSRSn. Write of 0 to any bit of this register has no effect
[2] The locking mechanism applies to only writes. Reads to the registers which have LOCK protection are always allowed

Figure 3-105 CPUSYSLOCK Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDBROMPATCHALL
R-0-0hR/WSonce-0hR/WSonce-0h
Table 3-127 CPUSYSLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1BROMPATCHR/WSonce0hLock bit for BROMPATCHADDRx/DATAx registers
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

0ALLR/WSonce0hLock bit for all CPUSYS registers except BROMPATCHADDRx/DATAx
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

3.15.11.2 PIEVERRADDR Register (Offset = 2h) [Reset = 003FFFFFh]

PIEVERRADDR is shown in Figure 3-106 and described in Table 3-128.

Return to the Summary Table.

PIE Vector Fetch Error Address register

Figure 3-106 PIEVERRADDR Register
313029282726252423222120191817161514131211109876543210
RESERVEDADDR
R-0-0hR/W-003FFFFFh
Table 3-128 PIEVERRADDR Register Field Descriptions
BitFieldTypeResetDescription
31-22RESERVEDR-00hReserved
21-0ADDRR/W003FFFFFhThis register defines the address of the PIE Vector Fetch Error handler routine. Its the responsibility of user to initialize this register. If this register is not initialized, a default error handler at address 0x3fffbe will get executed. Refer to the Boot ROM section for more details on this register.

Reset type: XRSn

3.15.11.3 SIMRESET Register (Offset = 4h) [Reset = 00000000h]

SIMRESET is shown in Figure 3-107 and described in Table 3-129.

Return to the Summary Table.

Simulated Reset Register
Note: This register exists only on CPU1

Figure 3-107 SIMRESET Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDXRSnCPU1RSn
R-0-0hR-0/W1S-0hR-0/W1S-0h
Table 3-129 SIMRESET Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hWrite to this register succeeds only if this field is written with a value of 0xa5a5

Note:
[1] Due to this KEY, only 32-bit writes will succeed (provided the KEY matches). 16-bit writes to the upper or lower half of this register will be ignored

Reset type: XRSn

15-2RESERVEDR-00hReserved
1XRSnR-0/W1S0hWriting a 1 to this field generates a XRSn like reset.
Writing a 0 has no effect.
Note: Writing to this pin will pull the XRSn pin low for 512 SECCLK clock cycles.

Reset type: XRSn

0CPU1RSnR-0/W1S0hWriting a 1 to this field generates a reset to to CPU1.
Writing a 0 has no effect.

Reset type: XRSn

3.15.11.4 LPMCR Register (Offset = 8h) [Reset = 000000FCh]

LPMCR is shown in Figure 3-108 and described in Table 3-130.

Return to the Summary Table.

LPM Control Register

Figure 3-108 LPMCR Register
3130292827262524
RESERVEDRESERVED
R/W1S-0hR-0-0h
2322212019181716
RESERVEDRESERVED
R-0-0hR/W-0h
15141312111098
WDINTERESERVED
R/W-0hR-0-0h
76543210
QUALSTDBYLPM
R/W-3FhR/W-0h
Table 3-130 LPMCR Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR/W1S0hReserved
30-18RESERVEDR-00hReserved
17-16RESERVEDR/W0hReserved
15WDINTER/W0hWhen this bit is set to 1, it enables the watchdog interrupt signal to wake the device from STANDBY mode.

Note:
[1] To use this signal, the user must also enable the WDINTn signal using the WDENINT bit in the SCSR register. This signal will not wake the device from HALT mode because the clock to watchdog module is turned off

Reset type: SYSRSn

14-8RESERVEDR-00hReserved
7-2QUALSTDBYR/W3FhSelect number of OSCCLK clock cycles to qualify the selected inputs when waking the from STANDBY mode:

000000 = 2 OSCCLKs
000001 = 3 OSCCLKs
......
111111 = 65 OSCCLKs
Note: The LPMCR.QUALSTDBY register should be set to a value greater than the ratio of SECCLK/PLLSYSCLK to ensure proper wake up.

Reset type: SYSRSn

1-0LPMR/W0hThese bits set the low power mode for the device. Takes effect when CPU executes the IDLE instruction (when IDLE instruction is out of EXE Phase of the Pipeline)

00: IDLE Mode
01: STANDBY Mode
1x: HALT Mode

Reset type: SYSRSn

3.15.11.5 GPIOLPMSEL0 Register (Offset = Ah) [Reset = 00000000h]

GPIOLPMSEL0 is shown in Figure 3-109 and described in Table 3-131.

Return to the Summary Table.

GPIO LPM Wakeup select registers

Connects the selected pin to the LPM circuit. Refer to LPM section of the TRM for the wakeup capabilities of the selected pin.

Figure 3-109 GPIOLPMSEL0 Register
3130292827262524
GPIO31GPIO30GPIO29GPIO28GPIO27GPIO26GPIO25GPIO24
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
GPIO23GPIO22GPIO21GPIO20GPIO19GPIO18GPIO17GPIO16
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
GPIO15GPIO14GPIO13GPIO12GPIO11GPIO10GPIO9GPIO8
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
GPIO7GPIO6GPIO5GPIO4GPIO3GPIO2GPIO1GPIO0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-131 GPIOLPMSEL0 Register Field Descriptions
BitFieldTypeResetDescription
31GPIO31R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

30GPIO30R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

29GPIO29R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

28GPIO28R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

27GPIO27R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

26GPIO26R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

25GPIO25R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

24GPIO24R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

23GPIO23R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

22GPIO22R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

21GPIO21R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

20GPIO20R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

19GPIO19R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

18GPIO18R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

17GPIO17R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

16GPIO16R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

15GPIO15R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

14GPIO14R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

13GPIO13R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

12GPIO12R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

11GPIO11R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

10GPIO10R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

9GPIO9R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

8GPIO8R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

7GPIO7R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

6GPIO6R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

5GPIO5R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

4GPIO4R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

3GPIO3R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

2GPIO2R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

1GPIO1R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

0GPIO0R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

3.15.11.6 GPIOLPMSEL1 Register (Offset = Ch) [Reset = 00000000h]

GPIOLPMSEL1 is shown in Figure 3-110 and described in Table 3-132.

Return to the Summary Table.

GPIO LPM Wakeup select registers

Connects the selected pin to the LPM circuit. Refer to LPM section of the TRM for the wakeup capabilities of the selected pin.

Figure 3-110 GPIOLPMSEL1 Register
3130292827262524
GPIO63GPIO62GPIO61GPIO60GPIO59GPIO58GPIO57GPIO56
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
GPIO55GPIO54GPIO53GPIO52GPIO51GPIO50GPIO49GPIO48
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
GPIO47GPIO46GPIO45GPIO44GPIO43GPIO42GPIO41GPIO40
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
GPIO39GPIO38GPIO37GPIO36GPIO35GPIO34GPIO33GPIO32
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-132 GPIOLPMSEL1 Register Field Descriptions
BitFieldTypeResetDescription
31GPIO63R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

30GPIO62R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

29GPIO61R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

28GPIO60R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

27GPIO59R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

26GPIO58R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

25GPIO57R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

24GPIO56R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

23GPIO55R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

22GPIO54R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

21GPIO53R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

20GPIO52R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

19GPIO51R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

18GPIO50R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

17GPIO49R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

16GPIO48R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

15GPIO47R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

14GPIO46R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

13GPIO45R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

12GPIO44R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

11GPIO43R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

10GPIO42R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

9GPIO41R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

8GPIO40R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

7GPIO39R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

6GPIO38R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

5GPIO37R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

4GPIO36R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

3GPIO35R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

2GPIO34R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

1GPIO33R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

0GPIO32R/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

3.15.11.7 TMR2CLKCTL Register (Offset = Eh) [Reset = 00000000h]

TMR2CLKCTL is shown in Figure 3-111 and described in Table 3-133.

Return to the Summary Table.

Timer2 Clock Measurement functionality control register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-111 TMR2CLKCTL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDTMR2CLKPRESCALETMR2CLKSRCSEL
R-0-0hR/W-0hR/W-0h
Table 3-133 TMR2CLKCTL Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR-00hReserved
5-3TMR2CLKPRESCALER/W0hCPU Timer 2 Clock Pre-Scale Value: These bits select the pre-scale value for the selected clock source for CPU Timer 2:
0,0,0,/1 (default on reset)
0,0,1,/2,
0,1,0,/4
0,1,1,/8
1,0,0,/16
1,0,1,spare (defaults to /16)
1,1,0,spare (defaults to /16)
1,1,1,spare (defaults to /16)

Note:
[1] The CPU Timer2s Clock sync logic detects an input clock edge when configured for any clock source other than SYSCLK and generates an appropriate clock pulse to the CPU timer2. If SYSCLK is approximately the same or less then the input clock source, then the user would need to configure the pre-scale value such that SYSCLK is at least twice as fast as the pre-scaled value.

Reset type: SYSRSn

2-0TMR2CLKSRCSELR/W0hCPU Timer 2 Clock Source Select Bit: This bit selects the source for CPU Timer 2:
000 =SYSCLK Selected (default on reset, pre-scale is bypassed)
001 = WROSCBY8
010 = SYSOSCBY4
011 = XTAL
100 = PUMPOSC (from no-wrapper)
101 = FOSCCLK (Reserved)
110 = AUXPLLCLK (Reserved)
111 = reserved

Reset type: SYSRSn

3.15.11.8 RESCCLR Register (Offset = 10h) [Reset = 00000000h]

RESCCLR is shown in Figure 3-112 and described in Table 3-134.

Return to the Summary Table.

Reset Cause Clear Register

Figure 3-112 RESCCLR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDSIMRESET_XRSnSIMRESET_CPU1RSnRESERVEDSCCRESETn
R-0-0hR-0/W1S-0hR-0/W1S-0hR-0-0hR-0/W1S-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDNMIWDRSnWDRSnXRSnPOR
R-0-0hR-0/W1S-0hR-0/W1S-0hR-0-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-134 RESCCLR Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR-00hReserved
11SIMRESET_XRSnR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

10SIMRESET_CPU1RSnR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

9RESERVEDR-00hReserved
8SCCRESETnR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

7RESERVEDR-00hReserved
6RESERVEDR-0/W1S0hReserved
5RESERVEDR-0/W1S0hReserved
4RESERVEDR-00hReserved
3NMIWDRSnR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

2WDRSnR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

1XRSnR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

0PORR-0/W1S0hClear bit for corresponding status bit in RESC. Read of RESCCLR always gives 0.
Writing a 1 to this bit clears the status bit in RESC to 0
Writing 0 has no effect.

Reset type: SYSRSn

3.15.11.9 RESC Register (Offset = 12h) [Reset = X0000003h]

RESC is shown in Figure 3-113 and described in Table 3-135.

Return to the Summary Table.

Reset Cause register

Figure 3-113 RESC Register
3130292827262524
DCONXRSn_pin_statusRESERVED
R-0hR-XhR-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDSIMRESET_XRSnSIMRESET_CPU1RSnRESERVEDSCCRESETn
R-0-0hR-0hR-0hR-0-0hR-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDNMIWDRSnWDRSnXRSnPOR
R-0-0hR-0hR-0hR-0-0hR-0hR-0hR-1hR-1h
Table 3-135 RESC Register Field Descriptions
BitFieldTypeResetDescription
31DCONR0hReading this bit provides the status of debugger connection to the C28x CPU.
0 : Debugger is not connected to the C28x CPU
1 : Debugger is connected to the C28x CPU

Notes:
[1] This bit is connected to the DCON o/p signal of the C28x CPU

Reset type: N/A

30XRSn_pin_statusRXhReading this bit provides the current status of the XRSn pin. Reset value is reflective of the pin status.

Reset type: N/A

29-16RESERVEDR-00hReserved
15-12RESERVEDR-00hReserved
11SIMRESET_XRSnR0hIf this bit is set, indicates that the device was reset by SIMRESET_XRSn

Reset type: PORESETn

10SIMRESET_CPU1RSnR0hIf this bit is set, indicates that the device was reset by SIMRESET_CPU1RSn

Reset type: PORESETn

9RESERVEDR-00hReserved
8SCCRESETnR0hIf this bit is set, indicates that the device was reset by SCCRESETn (fired by DCSM).

Reset type: PORESETn

7RESERVEDR-00hReserved
6RESERVEDR0hReserved
5RESERVEDR0hReserved
4RESERVEDR-00hReserved
3NMIWDRSnR0hIf this bit is set, indicates that the device was reset by NMIWDRSn.
Note: To know the exact cause of NMI after the reset, software needs to read NMISHDFLG registers

Reset type: PORESETn

2WDRSnR0hIf this bit is set, indicates that the device was reset by WDRSn.
Note:
[1] A bit inside WD module also provides the same information. This bit is present to keep things consistent. This register is a one-stop shop for the software to know the reset cause for the C28x core.

Reset type: PORESETn

1XRSnR1hIf this bit is set, indicates that the device was reset by XRSn.

Reset type: PORESETn

0PORR1hIf this bit is set, indicates that the device was reset by PORn.

Reset type: PORESETn

3.15.11.10 CMPSSLPMSEL Register (Offset = 14h) [Reset = 00000000h]

CMPSSLPMSEL is shown in Figure 3-114 and described in Table 3-136.

Return to the Summary Table.

CMPSS LPM Wakeup select registers

Connects the selected pin to the LPM circuit. Refer to LPM section of the TRM for the wakeup capabilities of the selected pin.

Figure 3-114 CMPSSLPMSEL Register
3130292827262524
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDCMPSS3LCMPSS3HCMPSS2LCMPSS2HCMPSS1LCMPSS1H
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-136 CMPSSLPMSEL Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR/W0hReserved
30RESERVEDR/W0hReserved
29RESERVEDR/W0hReserved
28RESERVEDR/W0hReserved
27RESERVEDR/W0hReserved
26RESERVEDR/W0hReserved
25RESERVEDR/W0hReserved
24RESERVEDR/W0hReserved
23RESERVEDR/W0hReserved
22RESERVEDR/W0hReserved
21RESERVEDR/W0hReserved
20RESERVEDR/W0hReserved
19RESERVEDR/W0hReserved
18RESERVEDR/W0hReserved
17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15RESERVEDR/W0hReserved
14RESERVEDR/W0hReserved
13RESERVEDR/W0hReserved
12RESERVEDR/W0hReserved
11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6RESERVEDR/W0hReserved
5CMPSS3LR/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

4CMPSS3HR/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

3CMPSS2LR/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

2CMPSS2HR/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

1CMPSS1LR/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

0CMPSS1HR/W0h 0 pin is dis-connected from LPM circuit
1 pin is connected to LPM circuit

Reset type: SYSRSn

3.15.11.11 CLKSTOPREQ Register (Offset = 16h) [Reset = 00000000h]

CLKSTOPREQ is shown in Figure 3-115 and described in Table 3-137.

Return to the Summary Table.

Peripheral Clock Stop Request Register
Note: This register exists only on CPU1

Figure 3-115 CLKSTOPREQ Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVED
R-0-0hR-0-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDCAN_ARESERVEDRESERVEDRESERVEDRESERVED
R-0-0hR/W-0hR/W-0hR-0-0hR/W-0hR-0-0hR/W-0h
Table 3-137 CLKSTOPREQ Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hWrite to any of the bits in this register will succeed only if a value of 0x5634 is written to the KEY field.

Reset type: SYSRSn

15-12RESERVEDR-00hReserved
11-10RESERVEDR-00hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7-6RESERVEDR-00hReserved
5RESERVEDR/W0hReserved
4CAN_AR/W0hCAN_A Clock Stop Request Bit
0: If clock to CAN_A is turned off, it will be turned on, else no effect.
1: Clock stop request toCAN_A
Note: Once set, this bit is cleared when clock to CAN_A is turned on as a result of a wakeup event in hardware

Reset type: SYSRSn

3RESERVEDR-00hReserved
2RESERVEDR/W0hReserved
1RESERVEDR-00hReserved
0RESERVEDR/W0hReserved

3.15.11.12 CLKSTOPACK Register (Offset = 18h) [Reset = 00000000h]

CLKSTOPACK is shown in Figure 3-116 and described in Table 3-138.

Return to the Summary Table.

Peripheral Clock Stop Ackonwledge Register
Note: This register exists only on CPU1

Figure 3-116 CLKSTOPACK Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDRESERVEDRESERVED
R-0-0hR-0hR-0h
76543210
RESERVEDRESERVEDCAN_ARESERVEDRESERVEDRESERVEDRESERVED
R-0-0hR-0hR-0hR-0-0hR-0hR-0-0hR-0h
Table 3-138 CLKSTOPACK Register Field Descriptions
BitFieldTypeResetDescription
31-10RESERVEDR-00hReserved
9RESERVEDR0hReserved
8RESERVEDR0hReserved
7-6RESERVEDR-00hReserved
5RESERVEDR0hReserved
4CAN_AR0hCAN_A Clock Stop Acknowledge Bit
0: Clock stop request not acknowledged
1: Clock stop acknowledged

Reset type: SYSRSn

3RESERVEDR-00hReserved
2RESERVEDR0hReserved
1RESERVEDR-00hReserved
0RESERVEDR0hReserved

3.15.11.13 USER_REG1_SYSRSn Register (Offset = 1Ah) [Reset = 00000000h]

USER_REG1_SYSRSn is shown in Figure 3-117 and described in Table 3-139.

Return to the Summary Table.

Software Configurable registers reset by SYSRSn

Figure 3-117 USER_REG1_SYSRSn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-139 USER_REG1_SYSRSn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by SYSRSn to be used by the application software

Reset type: SYSRSn

3.15.11.14 USER_REG2_SYSRSn Register (Offset = 1Ch) [Reset = 00000000h]

USER_REG2_SYSRSn is shown in Figure 3-118 and described in Table 3-140.

Return to the Summary Table.

Software Configurable registers reset by SYSRSn

Figure 3-118 USER_REG2_SYSRSn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-140 USER_REG2_SYSRSn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by SYSRSn to be used by the application software

Reset type: SYSRSn

3.15.11.15 USER_REG1_XRSn Register (Offset = 1Eh) [Reset = 00000000h]

USER_REG1_XRSn is shown in Figure 3-119 and described in Table 3-141.

Return to the Summary Table.

Software Configurable registers reset by XRSn

Figure 3-119 USER_REG1_XRSn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-141 USER_REG1_XRSn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by XRSn to be used by the application software

Reset type: XRSn

3.15.11.16 USER_REG2_XRSn Register (Offset = 20h) [Reset = 00000000h]

USER_REG2_XRSn is shown in Figure 3-120 and described in Table 3-142.

Return to the Summary Table.

Software Configurable registers reset by XRSn

Figure 3-120 USER_REG2_XRSn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-142 USER_REG2_XRSn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by XRSn to be used by the application software

Reset type: XRSn

3.15.11.17 USER_REG1_PORESETn Register (Offset = 22h) [Reset = 00000000h]

USER_REG1_PORESETn is shown in Figure 3-121 and described in Table 3-143.

Return to the Summary Table.

Software Configurable registers reset by PORESETn

Figure 3-121 USER_REG1_PORESETn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-143 USER_REG1_PORESETn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by PORESETn to be used by the application software

Reset type: PORESETn

3.15.11.18 USER_REG2_PORESETn Register (Offset = 24h) [Reset = 00000000h]

USER_REG2_PORESETn is shown in Figure 3-122 and described in Table 3-144.

Return to the Summary Table.

Software Configurable registers reset by PORESETn

Figure 3-122 USER_REG2_PORESETn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-144 USER_REG2_PORESETn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by PORESETn to be used by the application software

Reset type: PORESETn

3.15.11.19 USER_REG3_PORESETn Register (Offset = 26h) [Reset = 00000000h]

USER_REG3_PORESETn is shown in Figure 3-123 and described in Table 3-145.

Return to the Summary Table.

Software Configurable registers reset by PORESETn

Figure 3-123 USER_REG3_PORESETn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-145 USER_REG3_PORESETn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by PORESETn to be used by the application software

Reset type: PORESETn

3.15.11.20 USER_REG4_PORESETn Register (Offset = 28h) [Reset = 00000000h]

USER_REG4_PORESETn is shown in Figure 3-124 and described in Table 3-146.

Return to the Summary Table.

Software Configurable registers reset by PORESETn

Figure 3-124 USER_REG4_PORESETn Register
313029282726252423222120191817161514131211109876543210
BITS
R/W-0h
Table 3-146 USER_REG4_PORESETn Register Field Descriptions
BitFieldTypeResetDescription
31-0BITSR/W0hR/W bits reset by PORESETn to be used by the application software

Reset type: PORESETn

3.15.11.21 PERCLKCR Register (Offset = 3Ch) [Reset = 00000000h]

PERCLKCR is shown in Figure 3-125 and described in Table 3-147.

Return to the Summary Table.

Peripheral Clock Control

Figure 3-125 PERCLKCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDTBCLKSYNC
R-0-0hR/W-0hR/W-0h
Table 3-147 PERCLKCR Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1RESERVEDR/W0hReserved
0TBCLKSYNCR/W0hPWM Time Base Clock sync: When set PWM time bases of all the PWM modules belonging to the same CPU-Subsystem (as partitioned using their CPUSEL bits) start counting

Reset type: SYSRSn