SPRUJD3A July   2025  â€“ October 2025 F28E120SB , F28E120SC

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000â„¢ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studioâ„¢ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit (FPU)
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Power-On Reset (POR)
      4. 3.4.4  Brown-Out-Reset (BOR)
      5. 3.4.5  Watchdog Reset (WDRS)
      6. 3.4.6  NMI Watchdog Reset (NMIWDRS)
      7. 3.4.7  Debugger Reset (SYSRS)
      8. 3.4.8  DCSM Safe Code Copy Reset (SCCRESET)
      9. 3.4.9  Simulate External Reset (SIMRESET.XRS)
      10. 3.4.10 Simulate CPU Reset (SIMRESET_CPU1RS)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
      6. 3.5.6 PIE Interrupt Priority
        1. 3.5.6.1 Channel Priority
        2. 3.5.6.2 Group Priority
      7. 3.5.7 System Error
      8. 3.5.8 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection Logic
        2. 3.6.3.2 Flash Uncorrectable ECC Error
        3. 3.6.3.3 Software-Forced Error
      4. 3.6.4 Illegal Instruction Trap (ITRAP)
      5. 3.6.5 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (SYSOSC)
        2. 3.7.1.2 Backup Wide-Range Oscillator (WROSC)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low Power-Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
    11. 3.11 Memory Controller Module
      1. 3.11.1 Dedicated RAM (Mx RAM)
      2. 3.11.2 Global Shared RAM (GSx RAM)
      3. 3.11.3 Access Arbitration
      4. 3.11.4 Memory Error Detection, Correction, and Error Handling
        1. 3.11.4.1 Error Detection and Correction
        2. 3.11.4.2 Error Handling
      5. 3.11.5 Application Test Hooks for Error Detection and Correction
      6. 3.11.6 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 System Control Register Configuration Restrictions
    14. 3.14 Software
      1. 3.14.1 SYSCTL Examples
        1. 3.14.1.1 Missing clock detection (MCD)
        2. 3.14.1.2 XCLKOUT (External Clock Output) Configuration
    15. 3.15 SYSCTRL Registers
      1. 3.15.1  SYSCTRL Base Address Table
      2. 3.15.2  CPUTIMER_REGS Registers
      3. 3.15.3  PIE_CTRL_REGS Registers
      4. 3.15.4  WD_REGS Registers
      5. 3.15.5  NMI_INTRUPT_REGS Registers
      6. 3.15.6  XINT_REGS Registers
      7. 3.15.7  SYNC_SOC_REGS Registers
      8. 3.15.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.15.9  DEV_CFG_REGS Registers
      10. 3.15.10 CLK_CFG_REGS Registers
      11. 3.15.11 CPU_SYS_REGS Registers
      12. 3.15.12 SYS_STATUS_REGS Registers
      13. 3.15.13 MEM_CFG_REGS Registers
      14. 3.15.14 MEMORY_ERROR_REGS Registers
      15. 3.15.15 ROM_WAIT_STATE_REGS Registers
      16. 3.15.16 TEST_ERROR_REGS Registers
      17. 3.15.17 UID_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
      2. 4.5.2 Emulation Boot Flow
      3. 4.5.3 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Secure Flash Boot
        1. 4.7.4.1 Secure Flash CPU1 Linker File Example
      5. 4.7.5  Memory Maps
        1. 4.7.5.1 Boot ROM Memory Maps
        2. 4.7.5.2 Reserved RAM Memory Maps
      6. 4.7.6  ROM Tables
      7. 4.7.7  Boot Modes and Loaders
        1. 4.7.7.1 Boot Modes
          1. 4.7.7.1.1 Flash Boot
          2. 4.7.7.1.2 RAM Boot
          3. 4.7.7.1.3 Wait Boot
        2. 4.7.7.2 Bootloaders
          1. 4.7.7.2.1 SCI Boot Mode
          2. 4.7.7.2.2 SPI Boot Mode
          3. 4.7.7.2.3 I2C Boot Mode
          4. 4.7.7.2.4 Parallel Boot Mode
      8. 4.7.8  GPIO Assignments
      9. 4.7.9  Secure ROM Function APIs
      10. 4.7.10 Clock Initializations
      11. 4.7.11 Boot Status Information
        1. 4.7.11.1 Booting Status
      12. 4.7.12 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Bootloader Data Stream Structure
        1. 4.8.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Execute-Only Protection
      5. 5.2.5 Password Lock
      6. 5.2.6 JTAGLOCK
      7. 5.2.7 Link Pointer and Zone Select
      8. 5.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
      1. 5.6.1 RAMOPEN
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Wrapper
    4. 6.4  Flash and OTP Memory Performance
    5. 6.5  Flash Read Interface
      1. 6.5.1 C28x-Flash Read Interface
        1. 6.5.1.1 Standard Read Mode
        2. 6.5.1.2 Prefetch Mode
        3. 6.5.1.3 Data Cache
        4. 6.5.1.4 Flash Read Operation
    6. 6.6  Flash Erase and Program
      1. 6.6.1 Erase
      2. 6.6.2 Program
      3. 6.6.3 Verify
    7. 6.7  Error Correction Code (ECC) Protection
      1. 6.7.1 Single-Bit Data Error
      2. 6.7.2 Uncorrectable Error
      3. 6.7.3 ECC Logic Self Test
    8. 6.8  Reserved Locations Within Flash and OTP
    9. 6.9  Migrating an Application from RAM to Flash
    10. 6.10 Procedure to Change the Flash Control Registers
    11. 6.11 Software
      1. 6.11.1 FLASH Examples
        1. 6.11.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
    12. 6.12 FLASH Registers
      1. 6.12.1 FLASH Base Address Table
      2. 6.12.2 FLASH_CTRL_REGS Registers
      3. 6.12.3 FLASH_ECC_REGS Registers
  9. Dual-Clock Comparator (DCC)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 Block Diagram
    2. 7.2 Module Operation
      1. 7.2.1 Configuring DCC Counters
      2. 7.2.2 Single-Shot Measurement Mode
      3. 7.2.3 Continuous Monitoring Mode
      4. 7.2.4 Error Conditions
    3. 7.3 Interrupts
    4. 7.4 Software
      1. 7.4.1 DCC Examples
        1. 7.4.1.1 DCC Single shot Clock verification
        2. 7.4.1.2 DCC Single shot Clock measurement
        3. 7.4.1.3 DCC Continuous clock monitoring
        4. 7.4.1.4 DCC Continuous clock monitoring
        5. 7.4.1.5 DCC Detection of clock failure
    5. 7.5 DCC Registers
      1. 7.5.1 DCC Base Address Table
      2. 7.5.2 DCC_REGS Registers
  10. General-Purpose Input/Output (GPIO)
    1. 8.1  Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2  Configuration Overview
    3. 8.3  Digital Inputs on ADC Pins (AIOs)
    4. 8.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 8.5  Digital General-Purpose I/O Control
    6. 8.6  Input Qualification
      1. 8.6.1 No Synchronization (Asynchronous Input)
      2. 8.6.2 Synchronization to SYSCLKOUT Only
      3. 8.6.3 Qualification Using a Sampling Window
    7. 8.7  GPIO and Peripheral Muxing
      1. 8.7.1 GPIO Muxing
      2. 8.7.2 Peripheral Muxing
    8. 8.8  Internal Pullup Configuration Requirements
    9. 8.9  Open-Drain Configuration Requirements
    10. 8.10 Software
      1. 8.10.1 GPIO Examples
        1. 8.10.1.1 Device GPIO Setup
        2. 8.10.1.2 Device GPIO Toggle
        3. 8.10.1.3 Device GPIO Interrupt
        4. 8.10.1.4 External Interrupt (XINT)
      2. 8.10.2 LED Examples
    11. 8.11 GPIO Registers
      1. 8.11.1 GPIO Base Address Table
      2. 8.11.2 GPIO_CTRL_REGS Registers
      3. 8.11.3 GPIO_DATA_REGS Registers
      4. 8.11.4 GPIO_DATA_READ_REGS Registers
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR
    2. 9.2 MCPWM and GPIO Output X-BAR
      1. 9.2.1 MCPWM X-BAR
        1. 9.2.1.1 MCPWM X-BAR Architecture
      2. 9.2.2 GPIO Output X-BAR
        1. 9.2.2.1 GPIO Output X-BAR Architecture
      3. 9.2.3 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 PWM_XBAR_REGS Registers
      5. 9.3.5 OUTPUT_XBAR_REGS Registers
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
  13. 11Analog Subsystem
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Digital Inputs on ADC Pins (AIOs)
    3. 11.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    4. 11.4 Analog Pins and Internal Connections
    5. 11.5 ASBSYS Registers
      1. 11.5.1 ASBSYS Base Address Table
      2. 11.5.2 ANALOG_SUBSYS_REGS Registers
  14. 12Analog-to-Digital Converter (ADC)
    1. 12.1  Introduction
      1. 12.1.1 Features
      2. 12.1.2 ADC Related Collateral
      3. 12.1.3 Block Diagram
    2. 12.2  ADC Configurability
      1. 12.2.1 ADC Clock Configuration
      2. 12.2.2 Resolution
      3. 12.2.3 Voltage Reference
        1. 12.2.3.1 External Reference Mode
        2. 12.2.3.2 Internal Reference Mode
        3. 12.2.3.3 Selecting Reference Mode
      4. 12.2.4 Signal Mode
        1. 12.2.4.1 Expected Conversion Results
        2. 12.2.4.2 Interpreting Conversion Results
    3. 12.3  SOC Principle of Operation
      1. 12.3.1 SOC Configuration
      2. 12.3.2 Trigger Operation
        1. 12.3.2.1 Trigger Repeaters
          1. 12.3.2.1.1 Oversampling Mode
          2. 12.3.2.1.2 Re-trigger Spread
          3. 12.3.2.1.3 Trigger Repeater Configuration
            1. 12.3.2.1.3.1 Register Shadow Updates
          4. 12.3.2.1.4 Re-Trigger Logic
          5. 12.3.2.1.5 Multi-Path Triggering Behavior
      3. 12.3.3 ADC Acquisition (Sample and Hold) Window
      4. 12.3.4 Sample Capacitor Reset
      5. 12.3.5 ADC Input Models
      6. 12.3.6 Channel Selection
    4. 12.4  SOC Configuration Examples
      1. 12.4.1 Single Conversion from MCPWM Trigger
      2. 12.4.2 Multiple Conversions from CPU Timer Trigger
      3. 12.4.3 Software Triggering of SOCs
    5. 12.5  ADC Conversion Priority
    6. 12.6  EOC and Interrupt Operation
      1. 12.6.1 Interrupt Overflow
      2. 12.6.2 Continue to Interrupt Mode
      3. 12.6.3 Early Interrupt Configuration Mode
    7. 12.7  Post-Processing Blocks
      1. 12.7.1 PPB Offset Correction
      2. 12.7.2 PPB Error Calculation
      3. 12.7.3 PPB Limit Detection and Zero-Crossing Detection
    8. 12.8  Opens/Shorts Detection Circuit (OSDETECT)
      1. 12.8.1 Open Short Detection Implementation
      2. 12.8.2 Detecting an Open Input Pin
      3. 12.8.3 Detecting a Shorted Input Pin
    9. 12.9  Power-Up Sequence
    10. 12.10 ADC Calibration
      1. 12.10.1 ADC Zero Offset Calibration
    11. 12.11 ADC Timings
      1. 12.11.1 ADC Timing Diagrams
      2. 12.11.2 Post-Processing Block Timings
    12. 12.12 Additional Information
      1. 12.12.1 Choosing an Acquisition Window Duration
      2. 12.12.2 Result Register Mapping
      3. 12.12.3 Internal Temperature Sensor
      4. 12.12.4 Designing an External Reference Circuit
      5. 12.12.5 ADC-DAC Loopback Testing
      6. 12.12.6 Internal Test Mode
    13. 12.13 Software
      1. 12.13.1 ADC Examples
        1. 12.13.1.1 ADC Software Triggering
        2. 12.13.1.2 ADC MCPWM Triggering
        3. 12.13.1.3 ADC Temperature Sensor Conversion
        4. 12.13.1.4 ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        5. 12.13.1.5 ADC PPB Offset (adc_ppb_offset)
        6. 12.13.1.6 ADC PPB Limits (adc_ppb_limits)
        7. 12.13.1.7 ADC SOC Oversampling
        8. 12.13.1.8 ADC Trigger Repeater Oversampling
    14. 12.14 ADC Registers
      1. 12.14.1 ADC Base Address Table
      2. 12.14.2 ADC_LITE_RESULT_REGS Registers
      3. 12.14.3 ADC_LITE_REGS Registers
  15. 13Comparator Subsystem (CMPSS)
    1. 13.1 Introduction
      1. 13.1.1 Features
      2. 13.1.2 CMPSS Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2 Comparator
    3. 13.3 Reference DAC
    4. 13.4 Digital Filter
      1. 13.4.1 Filter Initialization Sequence
    5. 13.5 Using the CMPSS
      1. 13.5.1 LATCHCLR, and MCPWMSYNCPER Signals
      2. 13.5.2 Synchronizer, Digital Filter, and Latch Delays
      3. 13.5.3 Calibrating the CMPSS
      4. 13.5.4 Enabling and Disabling the CMPSS Clock
    6. 13.6 CMPSS DAC Output
    7. 13.7 Software
      1. 13.7.1 CMPSS Examples
      2. 13.7.2 CMPSS_LITE Examples
        1. 13.7.2.1 CMPSSLITE Asynchronous Trip
    8. 13.8 CMPSS Registers
      1. 13.8.1 CMPSS Base Address Table
      2. 13.8.2 CMPSS_LITE_REGS Registers
  16. 14Programmable Gain Amplifier (PGA)
    1. 14.1  Programmable Gain Amplifier (PGA) Overview
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2  Linear Output Range
    3. 14.3  Gain Values
    4. 14.4  Modes of Operation
      1. 14.4.1 Buffer Mode
      2. 14.4.2 Standalone Mode
      3. 14.4.3 Non-inverting Mode
      4. 14.4.4 Subtractor Mode
    5. 14.5  External Filtering
      1. 14.5.1 Low-Pass Filter Using Internal Filter Resistor and External Capacitor
      2. 14.5.2 Single Pole Low-Pass Filter Using Internal Gain Resistor and External Capacitor
    6. 14.6  Error Calibration
      1. 14.6.1 Offset Error
      2. 14.6.2 Gain Error
    7. 14.7  Chopping Feature
    8. 14.8  Enabling and Disabling the PGA Clock
    9. 14.9  Lock Register
    10. 14.10 Analog Front-End Integration
      1. 14.10.1 Analog-to-Digital Converter (ADC)
        1. 14.10.1.1 Unfiltered Acquisition Window
        2. 14.10.1.2 Filtered Acquisition Window
      2. 14.10.2 Comparator Subsystem (CMPSS)
      3. 14.10.3 Alternate Functions
    11. 14.11 Examples
      1. 14.11.1 Non-Inverting Amplifier Using Non-Inverting Mode
      2. 14.11.2 Buffer Mode
      3. 14.11.3 Low-Side Current Sensing
      4. 14.11.4 Bidirectional Current Sensing
    12. 14.12 Software
      1. 14.12.1 PGA Examples
        1. 14.12.1.1 PGA CMPSSDAC-ADC External Loopback Example
    13. 14.13 PGA Registers
      1. 14.13.1 PGA Base Address Table
      2. 14.13.2 PGA_REGS Registers
  17. 15Multi-Channel Pulse Width Modulator (MCPWM)
    1. 15.1  Introduction
      1. 15.1.1 PWM Related Collateral
      2. 15.1.2 Submodule Overview
    2. 15.2  Configuring Device Pins
    3. 15.3  MCPWM Modules Overview
    4. 15.4  Time-Base (TB) Submodule
      1. 15.4.1 Purpose of the Time-Base Submodule
      2. 15.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 15.4.3 Calculating PWM Period and Frequency
        1. 15.4.3.1 Time-Base Period Shadow Register
        2. 15.4.3.2 Time-Base Clock Synchronization
        3. 15.4.3.3 Time-Base Counter Synchronization
        4. 15.4.3.4 MCPWM SYNC Selection
      4. 15.4.4 Phase Locking the Time-Base Clocks of Multiple MCPWM Modules
      5. 15.4.5 Time-Base Counter Modes and Timing Waveforms
      6. 15.4.6 Global Load
        1. 15.4.6.1 One-Shot Load Mode
    5. 15.5  Counter-Compare (CC) Submodule
      1. 15.5.1 Purpose of the Counter-Compare Submodule
      2. 15.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 15.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 15.5.4 Count Mode Timing Waveforms
    6. 15.6  Action-Qualifier (AQ) Submodule
      1. 15.6.1 Purpose of the Action-Qualifier Submodule
      2. 15.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 15.6.3 Action-Qualifier Event Priority
      4. 15.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 15.6.5 Configuration Requirements for Common Waveforms
    7. 15.7  Dead-Band Generator (DB) Submodule
      1. 15.7.1 Purpose of the Dead-Band Submodule
      2. 15.7.2 Dead-Band Submodule Additional Operating Modes
      3. 15.7.3 Operational Highlights for the Dead-Band Submodule
    8. 15.8  Trip-Zone (TZ) Submodule
      1. 15.8.1 Purpose of the Trip-Zone Submodule
      2. 15.8.2 Operational Highlights for the Trip-Zone Submodule
        1. 15.8.2.1 Trip-Zone Configurations
      3. 15.8.3 Generating Trip Event Interrupts
    9. 15.9  Event-Trigger (ET) Submodule
      1. 15.9.1 Operational Overview of the MCPWM Event-Trigger Submodule
    10. 15.10 PWM Crossbar (X-BAR)
    11. 15.11 Software
      1. 15.11.1 MCPWM Examples
        1. 15.11.1.1 MCPWM Basic PWM Generation and Updates
        2. 15.11.1.2 MCPWM Basic PWM Generation and Updates
        3. 15.11.1.3 MCPWM Basic PWM generation With DeadBand
        4. 15.11.1.4 MCPWM Basic PWM Generation and Updates without Sysconfig
        5. 15.11.1.5 MCPWM PWM Tripzone Feature Showcase
        6. 15.11.1.6 MCPWM Global Load Feature Showcase
        7. 15.11.1.7 MCPWM DMA Configuration for Dynamic PWM Control
    12. 15.12 MCPWM Registers
      1. 15.12.1 MCPWM Base Address Table
      2. 15.12.2 MCPWM_6CH_REGS Registers
      3. 15.12.3 MCPWM_2CH_REGS Registers
  18. 16Enhanced Capture (eCAP)
    1. 16.1 Introduction
      1. 16.1.1 Features
      2. 16.1.2 ECAP Related Collateral
    2. 16.2 Description
    3. 16.3 Configuring Device Pins for the eCAP
    4. 16.4 Capture and APWM Operating Mode
    5. 16.5 Capture Mode Description
      1. 16.5.1 Event Prescaler
      2. 16.5.2 Edge Polarity Select and Qualifier
      3. 16.5.3 Continuous/One-Shot Control
      4. 16.5.4 32-Bit Counter and Phase Control
      5. 16.5.5 CAP1-CAP4 Registers
      6. 16.5.6 eCAP Synchronization
        1. 16.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 16.5.7 Interrupt Control
      8. 16.5.8 Shadow Load and Lockout Control
      9. 16.5.9 APWM Mode Operation
    6. 16.6 Application of the eCAP Module
      1. 16.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 16.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 16.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 16.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 16.7 Application of the APWM Mode
      1. 16.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 16.8 Software
      1. 16.8.1 ECAP Examples
        1. 16.8.1.1 eCAP APWM Example
        2. 16.8.1.2 eCAP Capture PWM Example
    9. 16.9 ECAP Registers
      1. 16.9.1 ECAP Base Address Table
      2. 16.9.2 ECAP_REGS Registers
  19. 17Enhanced Quadrature Encoder Pulse (eQEP)
    1. 17.1  Introduction
      1. 17.1.1 EQEP Related Collateral
    2. 17.2  Configuring Device Pins
    3. 17.3  Description
      1. 17.3.1 EQEP Inputs
      2. 17.3.2 Functional Description
      3. 17.3.3 eQEP Memory Map
    4. 17.4  Quadrature Decoder Unit (QDU)
      1. 17.4.1 Position Counter Input Modes
        1. 17.4.1.1 Quadrature Count Mode
        2. 17.4.1.2 Direction-Count Mode
        3. 17.4.1.3 Up-Count Mode
        4. 17.4.1.4 Down-Count Mode
      2. 17.4.2 eQEP Input Polarity Selection
      3. 17.4.3 Position-Compare Sync Output
    5. 17.5  Position Counter and Control Unit (PCCU)
      1. 17.5.1 Position Counter Operating Modes
        1. 17.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 17.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 17.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 17.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 17.5.2 Position Counter Latch
        1. 17.5.2.1 Index Event Latch
        2. 17.5.2.2 Strobe Event Latch
      3. 17.5.3 Position Counter Initialization
      4. 17.5.4 eQEP Position-compare Unit
    6. 17.6  eQEP Edge Capture Unit
    7. 17.7  eQEP Watchdog
    8. 17.8  eQEP Unit Timer Base
    9. 17.9  QMA Module
      1. 17.9.1 Modes of Operation
        1. 17.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 17.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 17.9.2 Interrupt and Error Generation
    10. 17.10 eQEP Interrupt Structure
    11. 17.11 Software
      1. 17.11.1 EQEP Examples
        1. 17.11.1.1 Frequency Measurement Using eQEP
        2. 17.11.1.2 Position and Speed Measurement Using eQEP
        3. 17.11.1.3 Frequency Measurement Using eQEP via unit timeout interrupt
        4. 17.11.1.4 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 17.12 EQEP Registers
      1. 17.12.1 EQEP Base Address Table
      2. 17.12.2 EQEP_REGS Registers
  20. 18Universal Asynchronous Receiver/Transmitter (UART)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 Block Diagram
    2. 18.2 Functional Description
      1. 18.2.1 Transmit and Receive Logic
      2. 18.2.2 Baud-Rate Generation
      3. 18.2.3 Data Transmission
      4. 18.2.4 Serial IR (SIR)
      5. 18.2.5 9-Bit UART Mode
      6. 18.2.6 FIFO Operation
      7. 18.2.7 Interrupts
      8. 18.2.8 Loopback Operation
      9. 18.2.9 DMA Operation
        1. 18.2.9.1 Receiving Data Using UART with DMA
        2. 18.2.9.2 Transmitting Data Using UART with DMA
    3. 18.3 Initialization and Configuration
    4. 18.4 Software
      1. 18.4.1 UART Examples
        1. 18.4.1.1 UART Echoback
        2. 18.4.1.2 UART Loopback
        3. 18.4.1.3 UART Loopback with interrupt
        4. 18.4.1.4 UART Digital Loopback with DMA
    5. 18.5 UART Registers
      1. 18.5.1 UART Base Address Table
      2. 18.5.2 UART_REGS Registers
      3. 18.5.3 UART_REGS_WRITE Registers
  21. 19Serial Peripheral Interface (SPI)
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 System-Level Integration
      1. 19.2.1 SPI Module Signals
      2. 19.2.2 Configuring Device Pins
        1. 19.2.2.1 GPIOs Required for High-Speed Mode
      3. 19.2.3 SPI Interrupts
      4. 19.2.4 DMA Support
    3. 19.3 SPI Operation
      1. 19.3.1  Introduction to Operation
      2. 19.3.2  Controller Mode
      3. 19.3.3  Peripheral Mode
      4. 19.3.4  Data Format
        1. 19.3.4.1 Transmission of Bit from SPIRXBUF
      5. 19.3.5  Baud Rate Selection
        1. 19.3.5.1 Baud Rate Determination
        2. 19.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 19.3.6  SPI Clocking Schemes
      7. 19.3.7  SPI FIFO Description
      8. 19.3.8  SPI DMA Transfers
        1. 19.3.8.1 Transmitting Data Using SPI with DMA
        2. 19.3.8.2 Receiving Data Using SPI with DMA
      9. 19.3.9  SPI High-Speed Mode
      10. 19.3.10 SPI 3-Wire Mode Description
    4. 19.4 Programming Procedure
      1. 19.4.1 Initialization Upon Reset
      2. 19.4.2 Configuring the SPI
      3. 19.4.3 Configuring the SPI for High-Speed Mode
      4. 19.4.4 Data Transfer Example
      5. 19.4.5 SPI 3-Wire Mode Code Examples
        1. 19.4.5.1 3-Wire Controller Mode Transmit
        2.       679
          1. 19.4.5.2.1 3-Wire Controller Mode Receive
        3.       681
          1. 19.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       683
          1. 19.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 19.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 19.5 Software
      1. 19.5.1 SPI Examples
        1. 19.5.1.1 SPI Digital Loopback
        2. 19.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 19.5.1.3 SPI Digital Loopback with DMA
        4. 19.5.1.4 SPI EEPROM
        5. 19.5.1.5 SPI DMA EEPROM
    6. 19.6 SPI Registers
      1. 19.6.1 SPI Base Address Table
      2. 19.6.2 SPI_REGS Registers
  22. 20Inter-Integrated Circuit Module (I2C)
    1. 20.1 Introduction
      1. 20.1.1 I2C Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Features Not Supported
      4. 20.1.4 Functional Overview
      5. 20.1.5 Clock Generation
      6. 20.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 20.1.6.1 Formula for the Controller Clock Period
    2. 20.2 Configuring Device Pins
    3. 20.3 I2C Module Operational Details
      1. 20.3.1  Input and Output Voltage Levels
      2. 20.3.2  Selecting Pullup Resistors
      3. 20.3.3  Data Validity
      4. 20.3.4  Operating Modes
      5. 20.3.5  I2C Module START and STOP Conditions
      6. 20.3.6  Non-repeat Mode versus Repeat Mode
      7. 20.3.7  Serial Data Formats
        1. 20.3.7.1 7-Bit Addressing Format
        2. 20.3.7.2 10-Bit Addressing Format
        3. 20.3.7.3 Free Data Format
        4. 20.3.7.4 Using a Repeated START Condition
      8. 20.3.8  Clock Synchronization
      9. 20.3.9  Clock Stretching
      10. 20.3.10 Arbitration
      11. 20.3.11 Digital Loopback Mode
      12. 20.3.12 NACK Bit Generation
    4. 20.4 Interrupt Requests Generated by the I2C Module
      1. 20.4.1 Basic I2C Interrupt Requests
      2. 20.4.2 I2C FIFO Interrupts
    5. 20.5 Resetting or Disabling the I2C Module
    6. 20.6 Software
      1. 20.6.1 I2C Registers to Driverlib Functions
      2. 20.6.2 I2C Examples
        1. 20.6.2.1 C28x-I2C Library source file for FIFO interrupts
        2. 20.6.2.2 C28x-I2C Library source file for FIFO using polling
        3. 20.6.2.3 I2C Digital Loopback with FIFO Interrupts
        4. 20.6.2.4 I2C EEPROM
        5. 20.6.2.5 I2C EEPROM
        6. 20.6.2.6 I2C EEPROM
    7. 20.7 I2C Registers
      1. 20.7.1 I2C Base Address Table
      2. 20.7.2 I2C_REGS Registers
  23. 21Serial Communications Interface (SCI)
    1. 21.1  Introduction
      1. 21.1.1 Features
      2. 21.1.2 SCI Related Collateral
      3. 21.1.3 Block Diagram
    2. 21.2  Architecture
    3. 21.3  SCI Module Signal Summary
    4. 21.4  Configuring Device Pins
    5. 21.5  Multiprocessor and Asynchronous Communication Modes
    6. 21.6  SCI Programmable Data Format
    7. 21.7  SCI Multiprocessor Communication
      1. 21.7.1 Recognizing the Address Byte
      2. 21.7.2 Controlling the SCI TX and RX Features
      3. 21.7.3 Receipt Sequence
    8. 21.8  Idle-Line Multiprocessor Mode
      1. 21.8.1 Idle-Line Mode Steps
      2. 21.8.2 Block Start Signal
      3. 21.8.3 Wake-Up Temporary (WUT) Flag
        1. 21.8.3.1 Sending a Block Start Signal
      4. 21.8.4 Receiver Operation
    9. 21.9  Address-Bit Multiprocessor Mode
      1. 21.9.1 Sending an Address
    10. 21.10 SCI Communication Format
      1. 21.10.1 Receiver Signals in Communication Modes
      2. 21.10.2 Transmitter Signals in Communication Modes
    11. 21.11 SCI Port Interrupts
      1. 21.11.1 Break Detect
    12. 21.12 SCI Baud Rate Calculations
    13. 21.13 SCI Enhanced Features
      1. 21.13.1 SCI FIFO Description
      2. 21.13.2 SCI Auto-Baud
      3. 21.13.3 Autobaud-Detect Sequence
    14. 21.14 Software
      1. 21.14.1 SCI Examples
        1. 21.14.1.1 Tune Baud Rate via UART Example
        2. 21.14.1.2 SCI FIFO Digital Loop Back
        3. 21.14.1.3 SCI Digital Loop Back with Interrupts
        4. 21.14.1.4 SCI Echoback
        5. 21.14.1.5 stdout redirect example
    15. 21.15 SCI Registers
      1. 21.15.1 SCI Base Address Table
      2. 21.15.2 SCI_REGS Registers
  24. 22Revision History

CLK_CFG_REGS Registers

Table 3-108 lists the memory-mapped registers for the CLK_CFG_REGS registers. All register offset addresses not listed in Table 3-108 should be considered as reserved locations and the register contents should not be modified.

Table 3-108 CLK_CFG_REGS Registers
OffsetAcronymRegister NameWrite Protection
0hCLKCFGLOCKLock bit for CLKCFG registersEALLOW
2hCLKSRCCTL1Clock Source Control register-1EALLOW
6hCLKSRCCTL3Clock Source Control register-3EALLOW
8hSYSPLLCTLSYSPLL Control registerEALLOW
AhSYSPLLMULTSYSPLL Multiplier registerEALLOW
ChSYSPLLSTSSYSPLL Status register
EhSYSCLKDIVSELSystem Clock Divider Select registerEALLOW
12hXCLKOUTDIVSELXCLKOUT Divider Select registerEALLOW
14hLOSPCPLow Speed Clock Source PrescalarEALLOW
16hMCDCRMissing Clock Detect Control RegisterEALLOW
18hX1CNT10-bit Counter on X1 Clock
1AhXTALCRXTAL Control RegisterEALLOW
1ChXTALCR2XTAL Control Register for pad initEALLOW
1EhCLKFAILCFGClock Fail cause ConfigurationEALLOW
20hCLKSRCSTSClock Source Status

Complex bit access types are encoded to fit into small table cells. Table 3-109 shows the codes that are used for access types in this section.

Table 3-109 CLK_CFG_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

3.15.10.1 CLKCFGLOCK Register (Offset = 0h) [Reset = 00000000h]

CLKCFGLOCK is shown in Figure 3-90 and described in Table 3-110.

Return to the Summary Table.

Lock bit for CLKCFG registers
Notes:
[1] Any bit in this register, once set can only be cleared through a CPU1.SYSRSn. Write of 0 to any bit of this register has no effect
[2] The locking mechanism applies to only writes. Reads to the registers which have LOCK protection are always allowed

Figure 3-90 CLKCFGLOCK Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDALL
R-0-0hR/WSonce-0h
Table 3-110 CLKCFGLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR-00hReserved
0ALLR/WSonce0hLock bit for all CLKCFG registers
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

3.15.10.2 CLKSRCCTL1 Register (Offset = 2h) [Reset = 00000002h]

CLKSRCCTL1 is shown in Figure 3-91 and described in Table 3-111.

Return to the Summary Table.

Clock Source Control register-1
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-91 CLKSRCCTL1 Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDWDHALTIRESERVEDSECCLKSRCSELOSCCLKSRCSEL
R-0-0hR/W-0hR/W-0hR/W-0hR/W-2h
Table 3-111 CLKSRCCTL1 Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR-00hReserved
5WDHALTIR/W0hWatchdog HALT Mode Ignore Bit: This bit determines if WD is functional in the HALT mode or not. Writing to this bit will unlock the PLL and clear the SYSPLLSTS.LOCKS bit.

0 = WD is not functional in the HALT mode. Clock to WD is gated when system enters HALT mode.
1 = WD is functional in the HALT mode. Clock to WD is not gated

Reset type: XRSn

4-3RESERVEDR/W0hReserved
2SECCLKSRCSELR/W0hSecondary Clock Source Select Bit: This bit selects the source for SECCLK.
0 = WROSCBY8 (default on reset)
1 = SYSOSCBY4
Notes:
When XTAL is selected as the OSCCLK source, the SECCLK can be chosen to use SYSOSCBY4, which is a more accurate clock compared to WROSCBY8

Reset type: XRSn

1-0OSCCLKSRCSELR/W2hOscillator Clock Source Select Bits: These bits select the source for OSCCLK.
00 = SYSOSCBY4
01 = External Oscillator (XTAL)
10 = WROSCBY8 (default)
11 = reserved (default to WROSCBY8)

The user must wait 10 OSCCLK cycles before writing to SYSPLLMULT or disabling the previous clock source to allow the change to
complete..
Notes:
[1] WROSCBY8 is recommended to be used only after missing clock detection. Though not recommended due to frequency instability, if user wants to re-lock the PLL with WROSCBY8 (the back-up clock source) after missing clock is detected, he can do a MCLKCLR and lock the PLL.

Reset type: XRSn

3.15.10.3 CLKSRCCTL3 Register (Offset = 6h) [Reset = 00000000h]

CLKSRCCTL3 is shown in Figure 3-92 and described in Table 3-112.

Return to the Summary Table.

Clock Source Control register-3
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-92 CLKSRCCTL3 Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDXCLKOUTSEL
R-0-0hR/W-0h
Table 3-112 CLKSRCCTL3 Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3-0XCLKOUTSELR/W0hXCLKOUT Source Select Bit: These bits select the source for XCLKOUT:
0x0 = PLLSYSCLK (default on reset)
0x1 = PLLCLK
0x2 = SYSCLK
0x3 = WROSC
0x4 = SYSOSC
0x5 = WROSCBY8
0x6 = SYSOSCBY4
0x7 = XTAL OSC o/p clock
0xC = PLLRAWCLK
Others = Reserved

Reset type: SYSRSn

3.15.10.4 SYSPLLCTL Register (Offset = 8h) [Reset = 00000000h]

SYSPLLCTL is shown in Figure 3-93 and described in Table 3-113.

Return to the Summary Table.

SYSPLL Control register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-93 SYSPLLCTL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDPLLCLKENPLLEN
R-0-0hR/W-0hR/W-0h
Table 3-113 SYSPLLCTL Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1PLLCLKENR/W0hSYSPLL bypassed or included in the PLLSYSCLK path: This bit decides if the SYSPLL is bypassed when PLLSYSCLK is generated

1 = PLLSYSCLK is fed from the SYSPLL clock output. Users need to make sure that the PLL is locked before enabling this clock to the system.
0 = SYSPLL is bypassed. Clock to system is direct feed from OSCCLK

Reset type: XRSn

0PLLENR/W0hSYSPLL enabled or disabled: This bit decides if the SYSPLL is enabled or not

1 = SYSPLL is enabled
0 = SYSPLL is powered off. Clock to system is direct feed from OSCCLK

Reset type: XRSn

3.15.10.5 SYSPLLMULT Register (Offset = Ah) [Reset = 00000000h]

SYSPLLMULT is shown in Figure 3-94 and described in Table 3-114.

Return to the Summary Table.

SYSPLL Multiplier register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-94 SYSPLLMULT Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVEDPDIV
R-0-0hR/W-0h
15141312111098
RESERVEDRDIVCLK0
R-0-0hR/W-0h
76543210
RESERVEDQDIV
R-0-0hR/W-0h
Table 3-114 SYSPLLMULT Register Field Descriptions
BitFieldTypeResetDescription
31-18RESERVEDR-00hReserved
17-16PDIVR/W0hPDIV selects the SYSPLL reference clock prescale divider.
0h = SYSPLLREF is divided by 1
1h = SYSPLLREF is divided by 2
2h = SYSPLLREF is divided by 4
3h = SYSPLLREF is divided by 8

Reset type: XRSn

15-12RESERVEDR-00hReserved
11-8RDIVCLK0R/W0hRDIVCLK0 sets the final divider for the SYSPLLCLK0 output (Rb divider).
0h = SYSPLLCLK0 is divided by 2
1h = SYSPLLCLK0 is divided by 4
2h = SYSPLLCLK0 is divided by 6
3h = SYSPLLCLK0 is divided by 8
4h = SYSPLLCLK0 is divided by 10
...
Eh = SYSPLLCLK0 is divided by 30
Fh = SYSPLLCLK0 is divided by 32

Reset type: XRSn

7RESERVEDR-00hReserved
6-0QDIVR/W0hQDIV selects the SYSPLL feedback path divider.
0h = Divide-by-one is not a valid QDIV option. This field should be programmed to a different value before enabling the PLL.
1h = Feedback path is divided by 2
2h = Feedback path is divided by 3
3h = Feedback path is divided by 4
...
7Eh = Feedback path is divided by 127
7Fh = Feedback path is divided by 128

Reset type: XRSn

3.15.10.6 SYSPLLSTS Register (Offset = Ch) [Reset = 00000002h]

SYSPLLSTS is shown in Figure 3-95 and described in Table 3-115.

Return to the Summary Table.

SYSPLL Status register

Figure 3-95 SYSPLLSTS Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDRESERVEDLOCKS
R-0-0hR-0hR-1hR-0h
Table 3-115 SYSPLLSTS Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2RESERVEDR0hReserved
1RESERVEDR1hReserved
0LOCKSR0hSYSPLL Lock Status Bit: This bit indicates whether the SYSPLL is locked or not. This bit will be cleared by any write to the CLKSRCCTL1.WDHALTI bit.

0 = SYSPLL is not yet locked
1 = SYSPLL is locked

Reset type: XRSn

3.15.10.7 SYSCLKDIVSEL Register (Offset = Eh) [Reset = 00000000h]

SYSCLKDIVSEL is shown in Figure 3-96 and described in Table 3-116.

Return to the Summary Table.

System Clock Divider Select register.
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-96 SYSCLKDIVSEL Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDPLLSYSCLKDIV
R-0-0hR/W-0h
Table 3-116 SYSCLKDIVSEL Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR-00hReserved
5-0PLLSYSCLKDIVR/W0hPLLSYSCLK Divide Select: This bit selects the divider setting for the PLLSYSCLK.

000000 = /1 (Default)
000001 = /2
000010 = /3
000011 = /4
000100 = /5
......
111111 = /64

Reset type: XRSn

3.15.10.8 XCLKOUTDIVSEL Register (Offset = 12h) [Reset = 00000003h]

XCLKOUTDIVSEL is shown in Figure 3-97 and described in Table 3-117.

Return to the Summary Table.

XCLKOUT Divider Select register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-97 XCLKOUTDIVSEL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDXCLKOUTDIV
R-0-0hR/W-3h
Table 3-117 XCLKOUTDIVSEL Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1-0XCLKOUTDIVR/W3hXCLKOUT Divide Select: This bit selects the divider setting for the XCLKOUT.

00 = /1
01 = /2
10 = /4
11 = /8 (default on reset)

Reset type: SYSRSn

3.15.10.9 LOSPCP Register (Offset = 14h) [Reset = 00000002h]

LOSPCP is shown in Figure 3-98 and described in Table 3-118.

Return to the Summary Table.

Low Speed Clock Source Prescalar

Figure 3-98 LOSPCP Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDLSPCLKDIV
R-0-0hR/W-2h
Table 3-118 LOSPCP Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2-0LSPCLKDIVR/W2hThese bits configure the low-speed peripheral clock (LSPCLK) rate
000,LSPCLK = / 1
001,LSPCLK = / 2
010,LSPCLK = / 4 (default on reset)
011,LSPCLK = / 6
100,LSPCLK = / 8
101,LSPCLK = / 10
110,LSPCLK = / 12
111,LSPCLK = / 14

Note:
[1] This clock is used as strobe for the SCI and SPI modules.

Reset type: SYSRSn

3.15.10.10 MCDCR Register (Offset = 16h) [Reset = 00000000h]

MCDCR is shown in Figure 3-99 and described in Table 3-119.

Return to the Summary Table.

Missing Clock Detect Control Register

Figure 3-99 MCDCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDOSCOFFMCLKOFFMCLKCLRMCLKSTS
R-0-0hR/W-0hR/W-0hR-0/W1S-0hR-0h
Table 3-119 MCDCR Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3OSCOFFR/W0hOscillator Clock Disconnect from MCD Bit:
0 = OSCCLK Connected to OSCCLK Counter in MCD module
1 = OSCCLK Disconnected to OSCCLK Counter in MCD module

Reset type: XRSn

2MCLKOFFR/W0hMissing Clock Detect Off Bit:
0 = Missing Clock Detect Circuit Enabled
1 = Missing Clock Detect Circuit Disabled

Reset type: XRSn

1MCLKCLRR-0/W1S0hMissing Clock Clear Bit:
Write 1' to this bit to clear MCLKSTS bit and reset the missing clock detect circuit.'

Reset type: XRSn

0MCLKSTSR0hMissing Clock Status Bit:
0 = OSCCLK Is OK
1 = OSCCLK Detected Missing, CLOCKFAILn Generated

Reset type: XRSn

3.15.10.11 X1CNT Register (Offset = 18h) [Reset = 00000000h]

X1CNT is shown in Figure 3-100 and described in Table 3-120.

Return to the Summary Table.

10-bit Counter on X1 Clock

Figure 3-100 X1CNT Register
31302928272625242322212019181716
RESERVEDCLR
R-0-0hR-0/W1S-0h
1514131211109876543210
RESERVEDX1CNT
R-0-0hR-0h
Table 3-120 X1CNT Register Field Descriptions
BitFieldTypeResetDescription
31-17RESERVEDR-00hReserved
16CLRR-0/W1S0hX1 Counter clear:
A write of '1' to this bit field clears the X1CNT and makes it count from 0x0 again (provided X1 clock is ticking).
Writes of '0' are ignore to this bit field

Reset type: XRSn

15-11RESERVEDR-00hReserved
10-0X1CNTR0hX1 Counter:
- This counter increments on every X1 CLOCKs positive-edge.
- Once it reaches the values of 0x7ff, it freezes
- Before switching from SYSOSCBY4 to X1, application must check this counter and make sure that it has saturated. This will ensure that the Crystal connected to X1/X2 is oscillating.

Reset type: XRSn

3.15.10.12 XTALCR Register (Offset = 1Ah) [Reset = 00000005h]

XTALCR is shown in Figure 3-101 and described in Table 3-121.

Return to the Summary Table.

XTAL Control Register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-101 XTALCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDSEOSCOFF
R-0-0hR/W-1hR/W-0hR/W-1h
Table 3-121 XTALCR Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2RESERVEDR/W1hReserved
1SER/W0hConfigures XTAL oscillator in single-ended or Crystal mode when
XTAL oscillator is powered up(i.e. OSCOFF = 0)

0 XTAL oscillator in Crystal mode
1 XTAL oscilator in single-ended mode (through X1)

Reset type: XRSn

0OSCOFFR/W1hThis bit if '1', powers-down the XTAL oscillator macro and hence doesn't let X2 to be driven by the XTAL oscillator. If a crystal is connected to X1/X2, user needs to first clear this bit, wait for the oscillator to power up (using X1CNT) and then only switch the clock source to X1/X2

NOTE: Ensure no resources are using this clock source prior to disabling it. For example OSCCLKSRCSEL (SYSPLL), CANxBCLKSEL (CAN Clock), TMR2CLKSRCSEL (CPUTIMER2) and XCLKOUTSEL(XCLKOUT).

Reset type: XRSn

3.15.10.13 XTALCR2 Register (Offset = 1Ch) [Reset = 00000003h]

XTALCR2 is shown in Figure 3-102 and described in Table 3-122.

Return to the Summary Table.

XTAL Control Register for pad init

Figure 3-102 XTALCR2 Register
31302928272625242322212019181716
RESERVED
R/W-0h
1514131211109876543210
RESERVEDFENXOFXIF
R-0-0hR/W-0hR/W-1hR/W-1h
Table 3-122 XTALCR2 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR/W0hReserved
15-3RESERVEDR-00hReserved
2FENR/W0hConfigures XTAL oscillator pad initilisation.
0 : XOSC pads are not driven through GPIO connection.
1 : XOSC pads are driven through connected GPIO as per XIF & XOF values.

This register has effect only when XOSC is OFF (no SE , no XTAL mode).
If this register is set during XOSC off state (XOSCOFF=1 & SE=0)
then upon change of these controls this bit gets reset and rearmed.

Reset type: XRSn

1XOFR/W1hPolarity selection to initialise XO /X2 pad of the XOSC before start-up
This value shall be deposited on the pad before XOSC started (XOSCOFF=1)
If FEN=0 or XOSC is in XTAL or SE mode
then this value will not be applied to the pad.

Reset type: XRSn

0XIFR/W1hPolarity selection to initialise XI /X1 pad of the XOSC before start-up
This value shall be deposited on the pad before XOSC started (XOSCOFF=1)
If FEN=0 or XOSC is in XTAL or SE mode
then this value will not be applied to the pad.

Reset type: XRSn

3.15.10.14 CLKFAILCFG Register (Offset = 1Eh) [Reset = 00000000h]

CLKFAILCFG is shown in Figure 3-103 and described in Table 3-123.

Return to the Summary Table.

Clock Fail cause Configuration

Figure 3-103 CLKFAILCFG Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDDCC0_ERROR_EN
R-0-0hR/W-0hR/W-0h
Table 3-123 CLKFAILCFG Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1RESERVEDR/W0hReserved
0DCC0_ERROR_ENR/W0hThis field enables DCC0 Error to cause the clock-fail NMI to get asserted.
0 : DCC0 Error does not affect Clock fail NMI
1: Occurrence of DCC0 Error triggers Clock fail NMI assertion and ERROR pin assertion.

Reset type: XRSn

3.15.10.15 CLKSRCSTS Register (Offset = 20h) [Reset = 00000000h]

CLKSRCSTS is shown in Figure 3-104 and described in Table 3-124.

Return to the Summary Table.

Clock Source Status

Figure 3-104 CLKSRCSTS Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDSYSOSC_FCL_DONESYSOSC_ENABLED
R-0-0hR-0hR-0h
Table 3-124 CLKSRCSTS Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1SYSOSC_FCL_DONER0h0 = SYSOSC FCL (Frequency Correction Loop) not done
1 = SYSOSC FCL (Frequency Correction Loop) done

Note: Before enabling the SYSPLL with SYSOSCBY4 as the REFCLK, SW should wait for this bit to be set to ensure that the PLL gets an accurate reference clock.

Reset type: PORESETn

0SYSOSC_ENABLEDR0h0 = SYSOSC is disabled
1 = SYSOSC is enabled

Reset type: PORESETn