SPRUJD3A July   2025  â€“ October 2025 F28E120SB , F28E120SC

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000â„¢ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studioâ„¢ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit (FPU)
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Power-On Reset (POR)
      4. 3.4.4  Brown-Out-Reset (BOR)
      5. 3.4.5  Watchdog Reset (WDRS)
      6. 3.4.6  NMI Watchdog Reset (NMIWDRS)
      7. 3.4.7  Debugger Reset (SYSRS)
      8. 3.4.8  DCSM Safe Code Copy Reset (SCCRESET)
      9. 3.4.9  Simulate External Reset (SIMRESET.XRS)
      10. 3.4.10 Simulate CPU Reset (SIMRESET_CPU1RS)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
      6. 3.5.6 PIE Interrupt Priority
        1. 3.5.6.1 Channel Priority
        2. 3.5.6.2 Group Priority
      7. 3.5.7 System Error
      8. 3.5.8 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection Logic
        2. 3.6.3.2 Flash Uncorrectable ECC Error
        3. 3.6.3.3 Software-Forced Error
      4. 3.6.4 Illegal Instruction Trap (ITRAP)
      5. 3.6.5 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (SYSOSC)
        2. 3.7.1.2 Backup Wide-Range Oscillator (WROSC)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low Power-Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
    11. 3.11 Memory Controller Module
      1. 3.11.1 Dedicated RAM (Mx RAM)
      2. 3.11.2 Global Shared RAM (GSx RAM)
      3. 3.11.3 Access Arbitration
      4. 3.11.4 Memory Error Detection, Correction, and Error Handling
        1. 3.11.4.1 Error Detection and Correction
        2. 3.11.4.2 Error Handling
      5. 3.11.5 Application Test Hooks for Error Detection and Correction
      6. 3.11.6 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 System Control Register Configuration Restrictions
    14. 3.14 Software
      1. 3.14.1 SYSCTL Examples
        1. 3.14.1.1 Missing clock detection (MCD)
        2. 3.14.1.2 XCLKOUT (External Clock Output) Configuration
    15. 3.15 SYSCTRL Registers
      1. 3.15.1  SYSCTRL Base Address Table
      2. 3.15.2  CPUTIMER_REGS Registers
      3. 3.15.3  PIE_CTRL_REGS Registers
      4. 3.15.4  WD_REGS Registers
      5. 3.15.5  NMI_INTRUPT_REGS Registers
      6. 3.15.6  XINT_REGS Registers
      7. 3.15.7  SYNC_SOC_REGS Registers
      8. 3.15.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.15.9  DEV_CFG_REGS Registers
      10. 3.15.10 CLK_CFG_REGS Registers
      11. 3.15.11 CPU_SYS_REGS Registers
      12. 3.15.12 SYS_STATUS_REGS Registers
      13. 3.15.13 MEM_CFG_REGS Registers
      14. 3.15.14 MEMORY_ERROR_REGS Registers
      15. 3.15.15 ROM_WAIT_STATE_REGS Registers
      16. 3.15.16 TEST_ERROR_REGS Registers
      17. 3.15.17 UID_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
      2. 4.5.2 Emulation Boot Flow
      3. 4.5.3 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Secure Flash Boot
        1. 4.7.4.1 Secure Flash CPU1 Linker File Example
      5. 4.7.5  Memory Maps
        1. 4.7.5.1 Boot ROM Memory Maps
        2. 4.7.5.2 Reserved RAM Memory Maps
      6. 4.7.6  ROM Tables
      7. 4.7.7  Boot Modes and Loaders
        1. 4.7.7.1 Boot Modes
          1. 4.7.7.1.1 Flash Boot
          2. 4.7.7.1.2 RAM Boot
          3. 4.7.7.1.3 Wait Boot
        2. 4.7.7.2 Bootloaders
          1. 4.7.7.2.1 SCI Boot Mode
          2. 4.7.7.2.2 SPI Boot Mode
          3. 4.7.7.2.3 I2C Boot Mode
          4. 4.7.7.2.4 Parallel Boot Mode
      8. 4.7.8  GPIO Assignments
      9. 4.7.9  Secure ROM Function APIs
      10. 4.7.10 Clock Initializations
      11. 4.7.11 Boot Status Information
        1. 4.7.11.1 Booting Status
      12. 4.7.12 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Bootloader Data Stream Structure
        1. 4.8.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Execute-Only Protection
      5. 5.2.5 Password Lock
      6. 5.2.6 JTAGLOCK
      7. 5.2.7 Link Pointer and Zone Select
      8. 5.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
      1. 5.6.1 RAMOPEN
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Wrapper
    4. 6.4  Flash and OTP Memory Performance
    5. 6.5  Flash Read Interface
      1. 6.5.1 C28x-Flash Read Interface
        1. 6.5.1.1 Standard Read Mode
        2. 6.5.1.2 Prefetch Mode
        3. 6.5.1.3 Data Cache
        4. 6.5.1.4 Flash Read Operation
    6. 6.6  Flash Erase and Program
      1. 6.6.1 Erase
      2. 6.6.2 Program
      3. 6.6.3 Verify
    7. 6.7  Error Correction Code (ECC) Protection
      1. 6.7.1 Single-Bit Data Error
      2. 6.7.2 Uncorrectable Error
      3. 6.7.3 ECC Logic Self Test
    8. 6.8  Reserved Locations Within Flash and OTP
    9. 6.9  Migrating an Application from RAM to Flash
    10. 6.10 Procedure to Change the Flash Control Registers
    11. 6.11 Software
      1. 6.11.1 FLASH Examples
        1. 6.11.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
    12. 6.12 FLASH Registers
      1. 6.12.1 FLASH Base Address Table
      2. 6.12.2 FLASH_CTRL_REGS Registers
      3. 6.12.3 FLASH_ECC_REGS Registers
  9. Dual-Clock Comparator (DCC)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 Block Diagram
    2. 7.2 Module Operation
      1. 7.2.1 Configuring DCC Counters
      2. 7.2.2 Single-Shot Measurement Mode
      3. 7.2.3 Continuous Monitoring Mode
      4. 7.2.4 Error Conditions
    3. 7.3 Interrupts
    4. 7.4 Software
      1. 7.4.1 DCC Examples
        1. 7.4.1.1 DCC Single shot Clock verification
        2. 7.4.1.2 DCC Single shot Clock measurement
        3. 7.4.1.3 DCC Continuous clock monitoring
        4. 7.4.1.4 DCC Continuous clock monitoring
        5. 7.4.1.5 DCC Detection of clock failure
    5. 7.5 DCC Registers
      1. 7.5.1 DCC Base Address Table
      2. 7.5.2 DCC_REGS Registers
  10. General-Purpose Input/Output (GPIO)
    1. 8.1  Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2  Configuration Overview
    3. 8.3  Digital Inputs on ADC Pins (AIOs)
    4. 8.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 8.5  Digital General-Purpose I/O Control
    6. 8.6  Input Qualification
      1. 8.6.1 No Synchronization (Asynchronous Input)
      2. 8.6.2 Synchronization to SYSCLKOUT Only
      3. 8.6.3 Qualification Using a Sampling Window
    7. 8.7  GPIO and Peripheral Muxing
      1. 8.7.1 GPIO Muxing
      2. 8.7.2 Peripheral Muxing
    8. 8.8  Internal Pullup Configuration Requirements
    9. 8.9  Open-Drain Configuration Requirements
    10. 8.10 Software
      1. 8.10.1 GPIO Examples
        1. 8.10.1.1 Device GPIO Setup
        2. 8.10.1.2 Device GPIO Toggle
        3. 8.10.1.3 Device GPIO Interrupt
        4. 8.10.1.4 External Interrupt (XINT)
      2. 8.10.2 LED Examples
    11. 8.11 GPIO Registers
      1. 8.11.1 GPIO Base Address Table
      2. 8.11.2 GPIO_CTRL_REGS Registers
      3. 8.11.3 GPIO_DATA_REGS Registers
      4. 8.11.4 GPIO_DATA_READ_REGS Registers
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR
    2. 9.2 MCPWM and GPIO Output X-BAR
      1. 9.2.1 MCPWM X-BAR
        1. 9.2.1.1 MCPWM X-BAR Architecture
      2. 9.2.2 GPIO Output X-BAR
        1. 9.2.2.1 GPIO Output X-BAR Architecture
      3. 9.2.3 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 PWM_XBAR_REGS Registers
      5. 9.3.5 OUTPUT_XBAR_REGS Registers
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
  13. 11Analog Subsystem
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Digital Inputs on ADC Pins (AIOs)
    3. 11.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    4. 11.4 Analog Pins and Internal Connections
    5. 11.5 ASBSYS Registers
      1. 11.5.1 ASBSYS Base Address Table
      2. 11.5.2 ANALOG_SUBSYS_REGS Registers
  14. 12Analog-to-Digital Converter (ADC)
    1. 12.1  Introduction
      1. 12.1.1 Features
      2. 12.1.2 ADC Related Collateral
      3. 12.1.3 Block Diagram
    2. 12.2  ADC Configurability
      1. 12.2.1 ADC Clock Configuration
      2. 12.2.2 Resolution
      3. 12.2.3 Voltage Reference
        1. 12.2.3.1 External Reference Mode
        2. 12.2.3.2 Internal Reference Mode
        3. 12.2.3.3 Selecting Reference Mode
      4. 12.2.4 Signal Mode
        1. 12.2.4.1 Expected Conversion Results
        2. 12.2.4.2 Interpreting Conversion Results
    3. 12.3  SOC Principle of Operation
      1. 12.3.1 SOC Configuration
      2. 12.3.2 Trigger Operation
        1. 12.3.2.1 Trigger Repeaters
          1. 12.3.2.1.1 Oversampling Mode
          2. 12.3.2.1.2 Re-trigger Spread
          3. 12.3.2.1.3 Trigger Repeater Configuration
            1. 12.3.2.1.3.1 Register Shadow Updates
          4. 12.3.2.1.4 Re-Trigger Logic
          5. 12.3.2.1.5 Multi-Path Triggering Behavior
      3. 12.3.3 ADC Acquisition (Sample and Hold) Window
      4. 12.3.4 Sample Capacitor Reset
      5. 12.3.5 ADC Input Models
      6. 12.3.6 Channel Selection
    4. 12.4  SOC Configuration Examples
      1. 12.4.1 Single Conversion from MCPWM Trigger
      2. 12.4.2 Multiple Conversions from CPU Timer Trigger
      3. 12.4.3 Software Triggering of SOCs
    5. 12.5  ADC Conversion Priority
    6. 12.6  EOC and Interrupt Operation
      1. 12.6.1 Interrupt Overflow
      2. 12.6.2 Continue to Interrupt Mode
      3. 12.6.3 Early Interrupt Configuration Mode
    7. 12.7  Post-Processing Blocks
      1. 12.7.1 PPB Offset Correction
      2. 12.7.2 PPB Error Calculation
      3. 12.7.3 PPB Limit Detection and Zero-Crossing Detection
    8. 12.8  Opens/Shorts Detection Circuit (OSDETECT)
      1. 12.8.1 Open Short Detection Implementation
      2. 12.8.2 Detecting an Open Input Pin
      3. 12.8.3 Detecting a Shorted Input Pin
    9. 12.9  Power-Up Sequence
    10. 12.10 ADC Calibration
      1. 12.10.1 ADC Zero Offset Calibration
    11. 12.11 ADC Timings
      1. 12.11.1 ADC Timing Diagrams
      2. 12.11.2 Post-Processing Block Timings
    12. 12.12 Additional Information
      1. 12.12.1 Choosing an Acquisition Window Duration
      2. 12.12.2 Result Register Mapping
      3. 12.12.3 Internal Temperature Sensor
      4. 12.12.4 Designing an External Reference Circuit
      5. 12.12.5 ADC-DAC Loopback Testing
      6. 12.12.6 Internal Test Mode
    13. 12.13 Software
      1. 12.13.1 ADC Examples
        1. 12.13.1.1 ADC Software Triggering
        2. 12.13.1.2 ADC MCPWM Triggering
        3. 12.13.1.3 ADC Temperature Sensor Conversion
        4. 12.13.1.4 ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        5. 12.13.1.5 ADC PPB Offset (adc_ppb_offset)
        6. 12.13.1.6 ADC PPB Limits (adc_ppb_limits)
        7. 12.13.1.7 ADC SOC Oversampling
        8. 12.13.1.8 ADC Trigger Repeater Oversampling
    14. 12.14 ADC Registers
      1. 12.14.1 ADC Base Address Table
      2. 12.14.2 ADC_LITE_RESULT_REGS Registers
      3. 12.14.3 ADC_LITE_REGS Registers
  15. 13Comparator Subsystem (CMPSS)
    1. 13.1 Introduction
      1. 13.1.1 Features
      2. 13.1.2 CMPSS Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2 Comparator
    3. 13.3 Reference DAC
    4. 13.4 Digital Filter
      1. 13.4.1 Filter Initialization Sequence
    5. 13.5 Using the CMPSS
      1. 13.5.1 LATCHCLR, and MCPWMSYNCPER Signals
      2. 13.5.2 Synchronizer, Digital Filter, and Latch Delays
      3. 13.5.3 Calibrating the CMPSS
      4. 13.5.4 Enabling and Disabling the CMPSS Clock
    6. 13.6 CMPSS DAC Output
    7. 13.7 Software
      1. 13.7.1 CMPSS Examples
      2. 13.7.2 CMPSS_LITE Examples
        1. 13.7.2.1 CMPSSLITE Asynchronous Trip
    8. 13.8 CMPSS Registers
      1. 13.8.1 CMPSS Base Address Table
      2. 13.8.2 CMPSS_LITE_REGS Registers
  16. 14Programmable Gain Amplifier (PGA)
    1. 14.1  Programmable Gain Amplifier (PGA) Overview
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2  Linear Output Range
    3. 14.3  Gain Values
    4. 14.4  Modes of Operation
      1. 14.4.1 Buffer Mode
      2. 14.4.2 Standalone Mode
      3. 14.4.3 Non-inverting Mode
      4. 14.4.4 Subtractor Mode
    5. 14.5  External Filtering
      1. 14.5.1 Low-Pass Filter Using Internal Filter Resistor and External Capacitor
      2. 14.5.2 Single Pole Low-Pass Filter Using Internal Gain Resistor and External Capacitor
    6. 14.6  Error Calibration
      1. 14.6.1 Offset Error
      2. 14.6.2 Gain Error
    7. 14.7  Chopping Feature
    8. 14.8  Enabling and Disabling the PGA Clock
    9. 14.9  Lock Register
    10. 14.10 Analog Front-End Integration
      1. 14.10.1 Analog-to-Digital Converter (ADC)
        1. 14.10.1.1 Unfiltered Acquisition Window
        2. 14.10.1.2 Filtered Acquisition Window
      2. 14.10.2 Comparator Subsystem (CMPSS)
      3. 14.10.3 Alternate Functions
    11. 14.11 Examples
      1. 14.11.1 Non-Inverting Amplifier Using Non-Inverting Mode
      2. 14.11.2 Buffer Mode
      3. 14.11.3 Low-Side Current Sensing
      4. 14.11.4 Bidirectional Current Sensing
    12. 14.12 Software
      1. 14.12.1 PGA Examples
        1. 14.12.1.1 PGA CMPSSDAC-ADC External Loopback Example
    13. 14.13 PGA Registers
      1. 14.13.1 PGA Base Address Table
      2. 14.13.2 PGA_REGS Registers
  17. 15Multi-Channel Pulse Width Modulator (MCPWM)
    1. 15.1  Introduction
      1. 15.1.1 PWM Related Collateral
      2. 15.1.2 Submodule Overview
    2. 15.2  Configuring Device Pins
    3. 15.3  MCPWM Modules Overview
    4. 15.4  Time-Base (TB) Submodule
      1. 15.4.1 Purpose of the Time-Base Submodule
      2. 15.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 15.4.3 Calculating PWM Period and Frequency
        1. 15.4.3.1 Time-Base Period Shadow Register
        2. 15.4.3.2 Time-Base Clock Synchronization
        3. 15.4.3.3 Time-Base Counter Synchronization
        4. 15.4.3.4 MCPWM SYNC Selection
      4. 15.4.4 Phase Locking the Time-Base Clocks of Multiple MCPWM Modules
      5. 15.4.5 Time-Base Counter Modes and Timing Waveforms
      6. 15.4.6 Global Load
        1. 15.4.6.1 One-Shot Load Mode
    5. 15.5  Counter-Compare (CC) Submodule
      1. 15.5.1 Purpose of the Counter-Compare Submodule
      2. 15.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 15.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 15.5.4 Count Mode Timing Waveforms
    6. 15.6  Action-Qualifier (AQ) Submodule
      1. 15.6.1 Purpose of the Action-Qualifier Submodule
      2. 15.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 15.6.3 Action-Qualifier Event Priority
      4. 15.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 15.6.5 Configuration Requirements for Common Waveforms
    7. 15.7  Dead-Band Generator (DB) Submodule
      1. 15.7.1 Purpose of the Dead-Band Submodule
      2. 15.7.2 Dead-Band Submodule Additional Operating Modes
      3. 15.7.3 Operational Highlights for the Dead-Band Submodule
    8. 15.8  Trip-Zone (TZ) Submodule
      1. 15.8.1 Purpose of the Trip-Zone Submodule
      2. 15.8.2 Operational Highlights for the Trip-Zone Submodule
        1. 15.8.2.1 Trip-Zone Configurations
      3. 15.8.3 Generating Trip Event Interrupts
    9. 15.9  Event-Trigger (ET) Submodule
      1. 15.9.1 Operational Overview of the MCPWM Event-Trigger Submodule
    10. 15.10 PWM Crossbar (X-BAR)
    11. 15.11 Software
      1. 15.11.1 MCPWM Examples
        1. 15.11.1.1 MCPWM Basic PWM Generation and Updates
        2. 15.11.1.2 MCPWM Basic PWM Generation and Updates
        3. 15.11.1.3 MCPWM Basic PWM generation With DeadBand
        4. 15.11.1.4 MCPWM Basic PWM Generation and Updates without Sysconfig
        5. 15.11.1.5 MCPWM PWM Tripzone Feature Showcase
        6. 15.11.1.6 MCPWM Global Load Feature Showcase
        7. 15.11.1.7 MCPWM DMA Configuration for Dynamic PWM Control
    12. 15.12 MCPWM Registers
      1. 15.12.1 MCPWM Base Address Table
      2. 15.12.2 MCPWM_6CH_REGS Registers
      3. 15.12.3 MCPWM_2CH_REGS Registers
  18. 16Enhanced Capture (eCAP)
    1. 16.1 Introduction
      1. 16.1.1 Features
      2. 16.1.2 ECAP Related Collateral
    2. 16.2 Description
    3. 16.3 Configuring Device Pins for the eCAP
    4. 16.4 Capture and APWM Operating Mode
    5. 16.5 Capture Mode Description
      1. 16.5.1 Event Prescaler
      2. 16.5.2 Edge Polarity Select and Qualifier
      3. 16.5.3 Continuous/One-Shot Control
      4. 16.5.4 32-Bit Counter and Phase Control
      5. 16.5.5 CAP1-CAP4 Registers
      6. 16.5.6 eCAP Synchronization
        1. 16.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 16.5.7 Interrupt Control
      8. 16.5.8 Shadow Load and Lockout Control
      9. 16.5.9 APWM Mode Operation
    6. 16.6 Application of the eCAP Module
      1. 16.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 16.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 16.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 16.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 16.7 Application of the APWM Mode
      1. 16.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 16.8 Software
      1. 16.8.1 ECAP Examples
        1. 16.8.1.1 eCAP APWM Example
        2. 16.8.1.2 eCAP Capture PWM Example
    9. 16.9 ECAP Registers
      1. 16.9.1 ECAP Base Address Table
      2. 16.9.2 ECAP_REGS Registers
  19. 17Enhanced Quadrature Encoder Pulse (eQEP)
    1. 17.1  Introduction
      1. 17.1.1 EQEP Related Collateral
    2. 17.2  Configuring Device Pins
    3. 17.3  Description
      1. 17.3.1 EQEP Inputs
      2. 17.3.2 Functional Description
      3. 17.3.3 eQEP Memory Map
    4. 17.4  Quadrature Decoder Unit (QDU)
      1. 17.4.1 Position Counter Input Modes
        1. 17.4.1.1 Quadrature Count Mode
        2. 17.4.1.2 Direction-Count Mode
        3. 17.4.1.3 Up-Count Mode
        4. 17.4.1.4 Down-Count Mode
      2. 17.4.2 eQEP Input Polarity Selection
      3. 17.4.3 Position-Compare Sync Output
    5. 17.5  Position Counter and Control Unit (PCCU)
      1. 17.5.1 Position Counter Operating Modes
        1. 17.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 17.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 17.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 17.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 17.5.2 Position Counter Latch
        1. 17.5.2.1 Index Event Latch
        2. 17.5.2.2 Strobe Event Latch
      3. 17.5.3 Position Counter Initialization
      4. 17.5.4 eQEP Position-compare Unit
    6. 17.6  eQEP Edge Capture Unit
    7. 17.7  eQEP Watchdog
    8. 17.8  eQEP Unit Timer Base
    9. 17.9  QMA Module
      1. 17.9.1 Modes of Operation
        1. 17.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 17.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 17.9.2 Interrupt and Error Generation
    10. 17.10 eQEP Interrupt Structure
    11. 17.11 Software
      1. 17.11.1 EQEP Examples
        1. 17.11.1.1 Frequency Measurement Using eQEP
        2. 17.11.1.2 Position and Speed Measurement Using eQEP
        3. 17.11.1.3 Frequency Measurement Using eQEP via unit timeout interrupt
        4. 17.11.1.4 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 17.12 EQEP Registers
      1. 17.12.1 EQEP Base Address Table
      2. 17.12.2 EQEP_REGS Registers
  20. 18Universal Asynchronous Receiver/Transmitter (UART)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 Block Diagram
    2. 18.2 Functional Description
      1. 18.2.1 Transmit and Receive Logic
      2. 18.2.2 Baud-Rate Generation
      3. 18.2.3 Data Transmission
      4. 18.2.4 Serial IR (SIR)
      5. 18.2.5 9-Bit UART Mode
      6. 18.2.6 FIFO Operation
      7. 18.2.7 Interrupts
      8. 18.2.8 Loopback Operation
      9. 18.2.9 DMA Operation
        1. 18.2.9.1 Receiving Data Using UART with DMA
        2. 18.2.9.2 Transmitting Data Using UART with DMA
    3. 18.3 Initialization and Configuration
    4. 18.4 Software
      1. 18.4.1 UART Examples
        1. 18.4.1.1 UART Echoback
        2. 18.4.1.2 UART Loopback
        3. 18.4.1.3 UART Loopback with interrupt
        4. 18.4.1.4 UART Digital Loopback with DMA
    5. 18.5 UART Registers
      1. 18.5.1 UART Base Address Table
      2. 18.5.2 UART_REGS Registers
      3. 18.5.3 UART_REGS_WRITE Registers
  21. 19Serial Peripheral Interface (SPI)
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 System-Level Integration
      1. 19.2.1 SPI Module Signals
      2. 19.2.2 Configuring Device Pins
        1. 19.2.2.1 GPIOs Required for High-Speed Mode
      3. 19.2.3 SPI Interrupts
      4. 19.2.4 DMA Support
    3. 19.3 SPI Operation
      1. 19.3.1  Introduction to Operation
      2. 19.3.2  Controller Mode
      3. 19.3.3  Peripheral Mode
      4. 19.3.4  Data Format
        1. 19.3.4.1 Transmission of Bit from SPIRXBUF
      5. 19.3.5  Baud Rate Selection
        1. 19.3.5.1 Baud Rate Determination
        2. 19.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 19.3.6  SPI Clocking Schemes
      7. 19.3.7  SPI FIFO Description
      8. 19.3.8  SPI DMA Transfers
        1. 19.3.8.1 Transmitting Data Using SPI with DMA
        2. 19.3.8.2 Receiving Data Using SPI with DMA
      9. 19.3.9  SPI High-Speed Mode
      10. 19.3.10 SPI 3-Wire Mode Description
    4. 19.4 Programming Procedure
      1. 19.4.1 Initialization Upon Reset
      2. 19.4.2 Configuring the SPI
      3. 19.4.3 Configuring the SPI for High-Speed Mode
      4. 19.4.4 Data Transfer Example
      5. 19.4.5 SPI 3-Wire Mode Code Examples
        1. 19.4.5.1 3-Wire Controller Mode Transmit
        2.       679
          1. 19.4.5.2.1 3-Wire Controller Mode Receive
        3.       681
          1. 19.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       683
          1. 19.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 19.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 19.5 Software
      1. 19.5.1 SPI Examples
        1. 19.5.1.1 SPI Digital Loopback
        2. 19.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 19.5.1.3 SPI Digital Loopback with DMA
        4. 19.5.1.4 SPI EEPROM
        5. 19.5.1.5 SPI DMA EEPROM
    6. 19.6 SPI Registers
      1. 19.6.1 SPI Base Address Table
      2. 19.6.2 SPI_REGS Registers
  22. 20Inter-Integrated Circuit Module (I2C)
    1. 20.1 Introduction
      1. 20.1.1 I2C Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Features Not Supported
      4. 20.1.4 Functional Overview
      5. 20.1.5 Clock Generation
      6. 20.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 20.1.6.1 Formula for the Controller Clock Period
    2. 20.2 Configuring Device Pins
    3. 20.3 I2C Module Operational Details
      1. 20.3.1  Input and Output Voltage Levels
      2. 20.3.2  Selecting Pullup Resistors
      3. 20.3.3  Data Validity
      4. 20.3.4  Operating Modes
      5. 20.3.5  I2C Module START and STOP Conditions
      6. 20.3.6  Non-repeat Mode versus Repeat Mode
      7. 20.3.7  Serial Data Formats
        1. 20.3.7.1 7-Bit Addressing Format
        2. 20.3.7.2 10-Bit Addressing Format
        3. 20.3.7.3 Free Data Format
        4. 20.3.7.4 Using a Repeated START Condition
      8. 20.3.8  Clock Synchronization
      9. 20.3.9  Clock Stretching
      10. 20.3.10 Arbitration
      11. 20.3.11 Digital Loopback Mode
      12. 20.3.12 NACK Bit Generation
    4. 20.4 Interrupt Requests Generated by the I2C Module
      1. 20.4.1 Basic I2C Interrupt Requests
      2. 20.4.2 I2C FIFO Interrupts
    5. 20.5 Resetting or Disabling the I2C Module
    6. 20.6 Software
      1. 20.6.1 I2C Registers to Driverlib Functions
      2. 20.6.2 I2C Examples
        1. 20.6.2.1 C28x-I2C Library source file for FIFO interrupts
        2. 20.6.2.2 C28x-I2C Library source file for FIFO using polling
        3. 20.6.2.3 I2C Digital Loopback with FIFO Interrupts
        4. 20.6.2.4 I2C EEPROM
        5. 20.6.2.5 I2C EEPROM
        6. 20.6.2.6 I2C EEPROM
    7. 20.7 I2C Registers
      1. 20.7.1 I2C Base Address Table
      2. 20.7.2 I2C_REGS Registers
  23. 21Serial Communications Interface (SCI)
    1. 21.1  Introduction
      1. 21.1.1 Features
      2. 21.1.2 SCI Related Collateral
      3. 21.1.3 Block Diagram
    2. 21.2  Architecture
    3. 21.3  SCI Module Signal Summary
    4. 21.4  Configuring Device Pins
    5. 21.5  Multiprocessor and Asynchronous Communication Modes
    6. 21.6  SCI Programmable Data Format
    7. 21.7  SCI Multiprocessor Communication
      1. 21.7.1 Recognizing the Address Byte
      2. 21.7.2 Controlling the SCI TX and RX Features
      3. 21.7.3 Receipt Sequence
    8. 21.8  Idle-Line Multiprocessor Mode
      1. 21.8.1 Idle-Line Mode Steps
      2. 21.8.2 Block Start Signal
      3. 21.8.3 Wake-Up Temporary (WUT) Flag
        1. 21.8.3.1 Sending a Block Start Signal
      4. 21.8.4 Receiver Operation
    9. 21.9  Address-Bit Multiprocessor Mode
      1. 21.9.1 Sending an Address
    10. 21.10 SCI Communication Format
      1. 21.10.1 Receiver Signals in Communication Modes
      2. 21.10.2 Transmitter Signals in Communication Modes
    11. 21.11 SCI Port Interrupts
      1. 21.11.1 Break Detect
    12. 21.12 SCI Baud Rate Calculations
    13. 21.13 SCI Enhanced Features
      1. 21.13.1 SCI FIFO Description
      2. 21.13.2 SCI Auto-Baud
      3. 21.13.3 Autobaud-Detect Sequence
    14. 21.14 Software
      1. 21.14.1 SCI Examples
        1. 21.14.1.1 Tune Baud Rate via UART Example
        2. 21.14.1.2 SCI FIFO Digital Loop Back
        3. 21.14.1.3 SCI Digital Loop Back with Interrupts
        4. 21.14.1.4 SCI Echoback
        5. 21.14.1.5 stdout redirect example
    15. 21.15 SCI Registers
      1. 21.15.1 SCI Base Address Table
      2. 21.15.2 SCI_REGS Registers
  24. 22Revision History

DEV_CFG_REGS Registers

Table 3-93 lists the memory-mapped registers for the DEV_CFG_REGS registers. All register offset addresses not listed in Table 3-93 should be considered as reserved locations and the register contents should not be modified.

Table 3-93 DEV_CFG_REGS Registers
OffsetAcronymRegister NameWrite Protection
2hPARTIDLLower 32-bit of Device PART Identification Number
4hPARTIDHUpper 32-bit of Device PART Identification Number
6hREVIDDevice Revision Number
EhDC_MEMORYDevice Capability: Memory Blocks Customization
10hPERCNFPeripheral Configuration register - GPIO
12hTRIMERRSTSTRIM Error Status register
1EhSOFTPRES_PROC_INFRAProcessing and Infra Blocks Software Reset registerEALLOW
20hSOFTPRES_CTRL_PERIPHControl Peripherals Software Reset registerEALLOW
22hSOFTPRES_COMM_PERIPHCommunication Peripherals Software Reset registerEALLOW
24hSOFTPRES_JTAGJTAG Software Reset registerEALLOW
28hTAP_STATUSStatus of JTAG State machine & Debugger Connect
2AhECAPTYPEConfigures ECAP Type for the deviceEALLOW
2ChTAP_CONTROLDisable TAP control

Complex bit access types are encoded to fit into small table cells. Table 3-94 shows the codes that are used for access types in this section.

Table 3-94 DEV_CFG_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1CW
1C
Write
1 to clear
WOnceW
Once
Write
Write once
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

3.15.9.1 PARTIDL Register (Offset = 2h) [Reset = 0000XXX0h]

PARTIDL is shown in Figure 3-77 and described in Table 3-95.

Return to the Summary Table.

Lower 32-bit of Device PART Identification Number

Figure 3-77 PARTIDL Register
3130292827262524
PARTID_FORMAT_REVRESERVED
R-0hR-0-0h
2322212019181716
FLASH_SIZE
R/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0hR-XhR-0hR-XhR-Xh
76543210
QUALRESERVEDRESERVEDRESERVED
R-XhR-0hR-0hR-0h
Table 3-95 PARTIDL Register Field Descriptions
BitFieldTypeResetDescription
31-28PARTID_FORMAT_REVR0hPARTID_FORMAT_REV

Reset type: PORESETn

27-24RESERVEDR-00hReserved
23-16FLASH_SIZER/W0h0x0 - Reserved
0x1 - 32 KB
0x2 - 64 KB
0x3 - 96 KB
0x4 - 128 KB
Others - Reserved

Reset type: PORESETn

15RESERVEDR0hReserved
14RESERVEDRXhReserved
13RESERVEDR0hReserved
12RESERVEDRXhReserved
11-8RESERVEDRXhReserved
7-6QUALRXh0 = Engineering sample (TMX)
1 = Pilot production (TMP)
2 = Fully qualified (TMS)

Reset type: PORESETn

5RESERVEDR0hReserved
4-3RESERVEDR0hReserved
2-0RESERVEDR0hReserved

3.15.9.2 PARTIDH Register (Offset = 4h) [Reset = 10XX0500h]

PARTIDH is shown in Figure 3-78 and described in Table 3-96.

Return to the Summary Table.

Upper 32-bit of Device PART Identification Number

Figure 3-78 PARTIDH Register
31302928272625242322212019181716
DEVICE_CLASS_IDPARTNO
R-10hR-XXh
1514131211109876543210
FAMILYRESERVEDRESERVED
R-5hR-0hR-0h
Table 3-96 PARTIDH Register Field Descriptions
BitFieldTypeResetDescription
31-24DEVICE_CLASS_IDR10hDevice class ID

Device Value
Sonata 0x40
Aumento 0x50
SOPRANO 0x00
POTENZA 0x01
SOPRANO-FELICE 0x02
TENOR 0x03
TOPOLINO 0x04
TOPOGRANDE 0X05
TOPOARIA 0x06
TOPOAUTO 0x07
GATTINO 0x08
Predator 0x09
Gara 0x0C
Veloce 0x0D
Invicta-MC1 0x10

Reset type: PORESETn

23-16PARTNORXXhRefer to Datasheet for Device Part Number

Reset type: PORESETn

15-8FAMILYR5hDevice Family
This field categorizes the device to one of the C2000 device families, namely Delfino, Piccolo (Harmony class), Delfino-Single core, Concerto etc.

Reset type: PORESETn

7-4RESERVEDR0hReserved
3-0RESERVEDR0hReserved

3.15.9.3 REVID Register (Offset = 6h) [Reset = 00000000h]

REVID is shown in Figure 3-79 and described in Table 3-97.

Return to the Summary Table.

Device Revision Number

Figure 3-79 REVID Register
313029282726252423222120191817161514131211109876543210
RESERVEDREVID
R-0-0hR/WOnce-0h
Table 3-97 REVID Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-00hReserved
15-0REVIDR/WOnce0hDevice Revision ID. Loaded from flash trim sector by boot rom. Reset value is die-specific.

Reset type: XRSn

3.15.9.4 DC_MEMORY Register (Offset = Eh) [Reset = 00000X0Xh]

DC_MEMORY is shown in Figure 3-80 and described in Table 3-98.

Return to the Summary Table.

Device Capability: Memory Blocks Customization

Figure 3-80 DC_MEMORY Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDBANK1_32KB_4BANK1_32KB_3BANK1_32KB_2BANK1_32KB_1
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR-Xh
76543210
BANK0_32KB_8BANK0_32KB_7BANK0_32KB_6BANK0_32KB_5BANK0_32KB_4BANK0_32KB_3BANK0_32KB_2BANK0_32KB_1
R/W-0hR/W-0hR/W-0hR/W-0hR-XhR-XhR-XhR-Xh
Table 3-98 DC_MEMORY Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-00hReserved
15RESERVEDR/W0hReserved
14RESERVEDR/W0hReserved
13RESERVEDR/W0hReserved
12RESERVEDR/W0hReserved
11BANK1_32KB_4R/W0hFlash Bank-1: Fourth 32 KB (upto 128 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

10BANK1_32KB_3R/W0hFlash Bank-1: Third 32 KB (upto 96 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

9BANK1_32KB_2R/W0hFlash Bank-1: Second 32 KB (upto 64 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

8BANK1_32KB_1RXhFlash Bank-1: First 32 KB
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

7BANK0_32KB_8R/W0hFlash Bank-0: Eigth 32 KB (upto 256 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

6BANK0_32KB_7R/W0hFlash Bank-0: Seventh 32 KB (upto 224 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

5BANK0_32KB_6R/W0hFlash Bank-0: Sixth 32 KB (upto 192 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

4BANK0_32KB_5R/W0hFlash Bank-0: Fifth 32 KB (upto 160 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

3BANK0_32KB_4RXhFlash Bank-0: Fourth 32 KB (upto 128 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

2BANK0_32KB_3RXhFlash Bank-0: Third 32 KB (upto 96 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

1BANK0_32KB_2RXhFlash Bank-0: Second 32 KB (upto 64 KB)
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

0BANK0_32KB_1RXhFlash Bank-0: First 32 KB
0: Respective sectors are not present in the device
1: Respective sectors are present in the device

Reset type: PORESETn

3.15.9.5 PERCNF Register (Offset = 10h) [Reset = 0000000Xh]

PERCNF is shown in Figure 3-81 and described in Table 3-99.

Return to the Summary Table.

Peripheral Configuration register - GPIO

Figure 3-81 PERCNF Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDGPIO_230_227GPIO_228_226
R-0-0hR-XhR-Xh
Table 3-99 PERCNF Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1GPIO_230_227RXhThis bit is used to provide protection (i.e. avoid contention when both the pads are configured in output mode) for the packages when GPIO228 and GPIO226 are double bonded.
0: No protection.
1: GPIO227GZ will be forced to input mode when GPIO230 is configured as output

Reset type: PORESETn

0GPIO_228_226RXhThis bit is used to provide protection (i.e. avoid contention when both the pads are configured in output mode) for the packages when GPIO228 and GPIO226 are double bonded.
0: No protection.
1: GPIO226GZ will be forced to input mode when GPIO228 is configured as output

Reset type: PORESETn

3.15.9.6 TRIMERRSTS Register (Offset = 12h) [Reset = 00000000h]

TRIMERRSTS is shown in Figure 3-82 and described in Table 3-100.

Return to the Summary Table.

TRIM Error Status register

Figure 3-82 TRIMERRSTS Register
313029282726252423222120191817161514131211109876543210
RESERVEDLERR
R-0-0hR/WSonce-0h
Table 3-100 TRIMERRSTS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-00hReserved
15-0LERRR/WSonce0hTRIM information load error status. This will include error during SRAM repair also.

0x1: Correctable single bit error
0x2: Uncorrectable double bit error
0x20: Trim over timeout error
Other: Non zero value indicates error during load

Note:
[1] This bit is updated by software. Details will be filled in once the Boot ROM related requirements are complete. It should have bits to indicate
(i) Double bit error during trim load
(ii) Single bit error during trim load
(iii) Double bit error during SRAM repair load
(iv) Single bit error error during SRAM repair load
(v) SRAM repair error load (chain is broken)
(vi) PWRUPSTS.TRIMOVER signal is not asserted even after the full wait time

Reset type: XRSn

3.15.9.7 SOFTPRES_PROC_INFRA Register (Offset = 1Eh) [Reset = 0000000Xh]

SOFTPRES_PROC_INFRA is shown in Figure 3-83 and described in Table 3-101.

Return to the Summary Table.

When bits in this register are set, the respective module is in reset. All design data is lost and the module registers are returned to their reset states. Bits must be manually cleared after being set.

Figure 3-83 SOFTPRES_PROC_INFRA Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDFLASHADCC1
R-0hR-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR-Xh
Table 3-101 SOFTPRES_PROC_INFRA Register Field Descriptions
BitFieldTypeResetDescription
31-10RESERVEDR0hReserved
9FLASHAR0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

8DCC1R/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

7RESERVEDR/W0hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1RESERVEDR/W0hReserved
0RESERVEDRXhReserved

3.15.9.8 SOFTPRES_CTRL_PERIPH Register (Offset = 20h) [Reset = 00XXXX0Xh]

SOFTPRES_CTRL_PERIPH is shown in Figure 3-84 and described in Table 3-102.

Return to the Summary Table.

When bits in this register are set, the respective module is in reset. All design data is lost and the module registers are returned to their reset states. Bits must be manually cleared after being set.

Figure 3-84 SOFTPRES_CTRL_PERIPH Register
3130292827262524
RESERVEDRESERVEDPGA1
R-0-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVEDCMPSS3CMPSS2CMPSS1RESERVED
R/W-0hR/W-0hR-XhR-XhR/W-0hR-XhR-XhR-Xh
15141312111098
ADC_AEQEP1RESERVEDECAP1RESERVEDRESERVEDRESERVEDRESERVED
R-XhR-XhR-XhR-XhR/W-0hR/W-0hR-XhR-Xh
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDPWM3RESERVEDPWM1
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR-Xh
Table 3-102 SOFTPRES_CTRL_PERIPH Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR-00hReserved
25RESERVEDR/W0hReserved
24PGA1R/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

23RESERVEDR/W0hReserved
22RESERVEDR/W0hReserved
21RESERVEDRXhReserved
20RESERVEDRXhReserved
19CMPSS3R/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

18CMPSS2RXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

17CMPSS1RXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

16RESERVEDRXhReserved
15ADC_ARXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

14EQEP1RXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

13RESERVEDRXhReserved
12ECAP1RXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDRXhReserved
8RESERVEDRXhReserved
7RESERVEDR/W0hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2PWM3R/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

1RESERVEDR/W0hReserved
0PWM1RXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

3.15.9.9 SOFTPRES_COMM_PERIPH Register (Offset = 22h) [Reset = 0000000Xh]

SOFTPRES_COMM_PERIPH is shown in Figure 3-85 and described in Table 3-103.

Return to the Summary Table.

When bits in this register are set, the respective module is in reset. All design data is lost and the module registers are returned to their reset states. Bits must be manually cleared after being set.

Figure 3-85 SOFTPRES_COMM_PERIPH Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDSPI_ARESERVEDUART_ASCI_BSCI_ARESERVEDI2C_A
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR-Xh
Table 3-103 SOFTPRES_COMM_PERIPH Register Field Descriptions
BitFieldTypeResetDescription
31-8RESERVEDR-00hReserved
7RESERVEDR/W0hReserved
6SPI_AR/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

5RESERVEDR/W0hReserved
4UART_AR/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

3SCI_BR/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

2SCI_AR/W0h1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

1RESERVEDR/W0hReserved
0I2C_ARXh1: Module is under reset
0: Module reset is determined by the normal device reset structure

Reset type: SYSRSn

3.15.9.10 SOFTPRES_JTAG Register (Offset = 24h) [Reset = 00000000h]

SOFTPRES_JTAG is shown in Figure 3-86 and described in Table 3-104.

Return to the Summary Table.

The Reset bit in this register needs to be set along with valid Key to ensure that JTAG nTRST is asserted. This is auto clear register.

Figure 3-86 SOFTPRES_JTAG Register
31302928272625242322212019181716
JTAG_nTRST_Key
R-0/W-0h
1514131211109876543210
RESERVEDJTAG_nTRST
R-0-0hR/W-0h
Table 3-104 SOFTPRES_JTAG Register Field Descriptions
BitFieldTypeResetDescription
31-16JTAG_nTRST_KeyR-0/W0h0xdcaf : Writing this Key value along with 0xA in JTAG_nTRST field causes a JTAG nTRST pulse generated to the JTAG state machine.
Any other write does not have impact on the JTAG state machine, bits are self clear when Reset is asserted to JTAG state machine.

Reset type: SYSRSn, TRSTn

15-4RESERVEDR-00hReserved
3-0JTAG_nTRSTR/W0h1010: Writing '1010' along with valid key in JTAG_nTRST_Key takes JTAG TAP to TLR state. Writing any other value or mismatched key does not have any effect on the JTAG TAP reset behavior.
Once Reset to JTAG domain is asserted then this field is reset back to 0.

Reset type: SYSRSn, TRSTn

3.15.9.11 TAP_STATUS Register (Offset = 28h) [Reset = 00000000h]

TAP_STATUS is shown in Figure 3-87 and described in Table 3-105.

Return to the Summary Table.

Status of JTAG State machine & Debugger Connect

Figure 3-87 TAP_STATUS Register
3130292827262524
DCONRESERVED
R-0hR-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
TAP_STATE
R-0h
76543210
TAP_STATE
R-0h
Table 3-105 TAP_STATUS Register Field Descriptions
BitFieldTypeResetDescription
31DCONR0hDebugConnect indication from IcePick.

Reset type: PORESETn

30-16RESERVEDR-00hReserved
15-0TAP_STATER0hTAP State Vector. With bits representing, Connect coresponding POTAP* output to the
0:TLR,
1:IDLE,
2:SELECTDR,
3:CAPDR,
4:SHIFTDR,
5:EXIT1DR,
6:PAUSEDR,
7:EXIT2DR,
8:UPDTDR,
9:SLECTIR,
10:CAPIR,
11:SHIFTIR,
12:EXIT1IR,
13:PAUSEIR,
14:EXIT2IR,
15:UPDTIR,

Reset type: PORESETn

3.15.9.12 ECAPTYPE Register (Offset = 2Ah) [Reset = 00000000h]

ECAPTYPE is shown in Figure 3-88 and described in Table 3-106.

Return to the Summary Table.

Based on the configuration enables disables features associated with the ECAP type.

Figure 3-88 ECAPTYPE Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
LOCKRESERVED
R/WSonce-0hR-0-0h
76543210
RESERVEDTYPE
R-0-0hR/W-0h
Table 3-106 ECAPTYPE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-00hReserved
15LOCKR/WSonce0h1: Write to this register is not allowed.
0: Write to this register is allowed.

Reset type: SYSRSn

14-2RESERVEDR-00hReserved
1-0TYPER/W0h'00,10,11' :
1. No EALLOW protection to ECAP registers.
'01' :
1. ECAP registers are EALLOW protected.

Reset type: SYSRSn

3.15.9.13 TAP_CONTROL Register (Offset = 2Ch) [Reset = 00000000h]

TAP_CONTROL is shown in Figure 3-89 and described in Table 3-107.

Return to the Summary Table.

Disable TAP control

Figure 3-89 TAP_CONTROL Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDBSCAN_DIS
R-0-0hR/W-0h
Table 3-107 TAP_CONTROL Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hWrite to this register succeeds only if this field is written with a value of 0xa5a5

Note:
[1] Due to this KEY, only 32-bit writes will succeed (provided the KEY matches). 16-bit writes to the upper or lower half of this register will be ignored

Reset type: PORESETn

15-1RESERVEDR-00hReserved
0BSCAN_DISR/W0hDisables BSCAN TAP control :

0: BSCAN TAP control enabled
1: BSCAN TAP control disabled

Reset type: PORESETn