ZHCSKZ7C June   2020  – February 2021 UCC21540-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 器件比较表
  6. 引脚配置和功能
    1.     UCC21540-Q1 引脚功能
  7. 规格
    1. 7.1  绝对最大额定值
    2. 7.2  ESD 等级
    3. 7.3  建议运行条件
    4. 7.4  热性能信息
    5. 7.5  额定功率
    6. 7.6  绝缘规格
    7. 7.7  安全相关认证
    8. 7.8  安全限值
    9. 7.9  电气特性
    10. 7.10 开关特性
    11. 7.11 绝缘特性曲线
    12. 7.12 典型特性
  8. 参数测量信息
    1. 8.1 最小脉冲
    2. 8.2 传播延迟和脉宽失真度
    3. 8.3 上升和下降时间
    4. 8.4 输入和禁用响应时间
    5. 8.5 可编程死区时间
    6. 8.6 上电 UVLO 到输出延迟
    7. 8.7 CMTI 测试
  9. 详细说明
    1. 9.1 概述
    2. 9.2 功能方框图
    3. 9.3 特性说明
      1. 9.3.1 VDD、VCCI 和欠压锁定 (UVLO)
      2. 9.3.2 输入和输出逻辑表
      3. 9.3.3 输入级
      4. 9.3.4 输出级
      5. 9.3.5 UCC21540-Q1 中的二极管结构
    4. 9.4 器件功能模式
      1. 9.4.1 禁用引脚
      2. 9.4.2 可编程死区时间 (DT) 引脚
        1. 9.4.2.1 DT 引脚连接至 VCCI
        2. 9.4.2.2 在 DT 和 GND 引脚之间连接编程电阻器
  10. 10应用和实现
    1. 10.1 应用信息
    2. 10.2 典型应用
      1. 10.2.1 设计要求
      2. 10.2.2 详细设计过程
        1. 10.2.2.1 设计 INA/INB 输入滤波器
        2. 10.2.2.2 选择死区时间电阻器和电容器
        3. 10.2.2.3 选择外部自举二极管及其串联电阻
        4. 10.2.2.4 栅极驱动器输出电阻器
        5. 10.2.2.5 栅极至源极电阻器选择
        6. 10.2.2.6 估算栅极驱动器功率损耗
        7. 10.2.2.7 估算结温
        8. 10.2.2.8 选择 VCCI、VDDA/B 电容器
          1. 10.2.2.8.1 选择 VCCI 电容器
          2. 10.2.2.8.2 选择 VDDA(自举)电容器
          3. 10.2.2.8.3 选择 VDDB 电容器
        9. 10.2.2.9 具有输出级负偏置的应用电路
      3. 10.2.3 应用曲线
  11. 11电源相关建议
  12. 12布局
    1. 12.1 布局指南
      1. 12.1.1 元件放置注意事项
      2. 12.1.2 接地注意事项
      3. 12.1.3 高电压注意事项
      4. 12.1.4 散热注意事项
    2. 12.2 布局示例
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 商标
    5. 13.5 静电放电警告
    6. 13.6 术语表
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

估算结温

UCC21540 UCC21540-Q1 的结温可以通过以下公式进行估算:

Equation18. GUID-64EB5BEF-8579-453E-A2D1-17963F1B7EE4-low.gif

其中

  • TJ 是结温。
  • TC 是用热电偶或其他仪器测得的 UCC21540-Q1 外壳温度。
  • ψJT 是来自Topic Link Label7.4表的结至顶特征参数。

使用结至顶特征参数 (ΨJT) 代替结至外壳热阻 (RΘJC) 可以极大地提高结温估算的准确性。大多数 IC 的大部分热能通过封装引线释放到 PCB 中,而总能量中仅有一小部分通过外壳顶部(通常在此处进行热电偶测量)进行释放。只有在大部分热能通过外壳释放时(例如采用金属封装或对 IC 封装应用散热器时),才能有效地使用 RΘJC 电阻。在所有其他情况下,使用 RΘJC 将无法准确地估算真实的结温。ΨJT 是通过假设通过 IC 顶部的能量在测试环境和应用环境中相似而通过实验得出的。只要遵循建议的布局指南,就可以准确地进行结温估算,将误差限制在几摄氏度内。更多信息,请参阅Topic Link Label12.1《半导体和 IC 封装热指标》应用报告