ZHCSKZ7C June   2020  – February 2021 UCC21540-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 器件比较表
  6. 引脚配置和功能
    1.     UCC21540-Q1 引脚功能
  7. 规格
    1. 7.1  绝对最大额定值
    2. 7.2  ESD 等级
    3. 7.3  建议运行条件
    4. 7.4  热性能信息
    5. 7.5  额定功率
    6. 7.6  绝缘规格
    7. 7.7  安全相关认证
    8. 7.8  安全限值
    9. 7.9  电气特性
    10. 7.10 开关特性
    11. 7.11 绝缘特性曲线
    12. 7.12 典型特性
  8. 参数测量信息
    1. 8.1 最小脉冲
    2. 8.2 传播延迟和脉宽失真度
    3. 8.3 上升和下降时间
    4. 8.4 输入和禁用响应时间
    5. 8.5 可编程死区时间
    6. 8.6 上电 UVLO 到输出延迟
    7. 8.7 CMTI 测试
  9. 详细说明
    1. 9.1 概述
    2. 9.2 功能方框图
    3. 9.3 特性说明
      1. 9.3.1 VDD、VCCI 和欠压锁定 (UVLO)
      2. 9.3.2 输入和输出逻辑表
      3. 9.3.3 输入级
      4. 9.3.4 输出级
      5. 9.3.5 UCC21540-Q1 中的二极管结构
    4. 9.4 器件功能模式
      1. 9.4.1 禁用引脚
      2. 9.4.2 可编程死区时间 (DT) 引脚
        1. 9.4.2.1 DT 引脚连接至 VCCI
        2. 9.4.2.2 在 DT 和 GND 引脚之间连接编程电阻器
  10. 10应用和实现
    1. 10.1 应用信息
    2. 10.2 典型应用
      1. 10.2.1 设计要求
      2. 10.2.2 详细设计过程
        1. 10.2.2.1 设计 INA/INB 输入滤波器
        2. 10.2.2.2 选择死区时间电阻器和电容器
        3. 10.2.2.3 选择外部自举二极管及其串联电阻
        4. 10.2.2.4 栅极驱动器输出电阻器
        5. 10.2.2.5 栅极至源极电阻器选择
        6. 10.2.2.6 估算栅极驱动器功率损耗
        7. 10.2.2.7 估算结温
        8. 10.2.2.8 选择 VCCI、VDDA/B 电容器
          1. 10.2.2.8.1 选择 VCCI 电容器
          2. 10.2.2.8.2 选择 VDDA(自举)电容器
          3. 10.2.2.8.3 选择 VDDB 电容器
        9. 10.2.2.9 具有输出级负偏置的应用电路
      3. 10.2.3 应用曲线
  11. 11电源相关建议
  12. 12布局
    1. 12.1 布局指南
      1. 12.1.1 元件放置注意事项
      2. 12.1.2 接地注意事项
      3. 12.1.3 高电压注意事项
      4. 12.1.4 散热注意事项
    2. 12.2 布局示例
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 商标
    5. 13.5 静电放电警告
    6. 13.6 术语表
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
选择 VDDA(自举)电容器

VDDA 电容器在自举电源配置中也被称为自举电容器,用于支持高达 4A(拉电流峰值电流)的栅极驱动电流瞬变并需要为功率晶体管维持稳定的栅极驱动电压。

每个开关周期所需的总电荷可以通过以下公式进行估算:

Equation19. GUID-98D664C0-CCA4-4C45-82AD-986712B8A7A8-low.gif

其中

  • QTotal:所需总电荷
  • QG:功率晶体管的栅极电荷。
  • IVDD:100 kHz、空载条件下通道自身的电流消耗。
  • fSW:栅极驱动器的开关频率

因此,所需的 CBoot 绝对最小值如下:

Equation20. GUID-5D95F853-0CAD-4A6A-A550-683F4B33F789-low.gif

其中

  • ΔVVDDA 是 VDDA 处的电压纹波,在本例中为 0.5V。

在实践中,CBoot 的值要大于计算所得的值。这样便允许存在直流偏置电压导致的电容变化,以及支持功率级原本会因负载瞬态而跳过一些脉冲的情况。因此,建议在 CBoot 值中包含一定的裕量,并将该电容器尽可能靠近 VDD 和 VSS 引脚放置。本例中选择了一个 50V、1 µF 电容器。

Equation21. GUID-2BB78D42-5D5B-4150-8795-98E8EE2E50A1-low.gif

选择自举电容器时,应注意确保 VDD 至 VSS 的电压不会降至第 6.3 节中所建议的最低工作电平以下。应相应地调整自举电容器的值,使其可以提供初始电荷来开关功率器件,然后在高侧导通期间持续提供栅极驱动器静态电流。

如果高侧电源电压降至 UVLO 下降阈值以下,高侧栅极驱动器输出将关断并会关闭功率器件。如果以不受控的方式硬开关功率器件,则会导致驱动器输出端出现高 di/dt 和高 dv/dt 瞬态,并可能对器件造成永久损坏。

若要进一步降低宽频率范围内的交流阻抗,建议靠近 VDDx - VSSx 引脚放置具有低 ESL/ESR 的旁路电容器。本例中将一个 100 nF、X7R 陶瓷电容器与 CBoot 并联来优化瞬态性能。

注:

使用过大的 CBOOT 不见得好。在前几个周期内,CBOOT 可能并不会充电,而 VBOOT 会保持在 UVLO 以下。因此,高侧 FET 并不会跟随输入信号命令。另外在初始 CBOOT 充电周期期间,自举二极管具有最高的反向恢复电流和损耗。