ZHCSL07C September 2019 – August 2021 TPS8802
PRODUCTION DATA
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| INPUT VOLTAGE AND CURRENTS | |||||||
| VPWRUP | Power up threshold. Note: Device enters active state when MCU_PG=1. | VCC rising | 1.2 | 1.55 | 2.0 | V | |
| VPWRDOWN | Power down threshold | VCC falling | 0.932 | 1.15 | 2.0 | V | |
| VPWR, HYS | VCC power up to power down hysteresis | 6.4 | 400 | 580 | mV | ||
| VVCCLOW, RISE | VCC low warning reset threshold | PLDO voltage rising | 2.35 | 2.54 | 2.7 | V | |
| Deglitch time | 110 | 141 | 172 | µs | |||
| VVCCLOW, FALL | VCC low warning assert threshold | PLDO voltage falling | 2.15 | 2.42 | 2.6 | V | |
| Deglitch time | 110 | 141 | 172 | µs | |||
| ISTANDBY | Standby Supply Current | All blocks that can be disabled are off, TJ=27C, VCC=3V, VMCU=1.8V | 3.8 | 4.4 | µA | ||
| All blocks that can be disabled are off, TJ=27C, VCC=9V, VMCU=3.3V | 7.7 | 9.1 | µA | ||||
| POWER LDO | |||||||
| VPLDO | Output Voltage | VCC = 2.0 V, IPLDO = 10 mA | 1.93 | 1.96 | 1.99 | V | |
| VCC = 2.0 V, IPLDO = 30 mA | 1.8 | 1.89 | 1.95 | V | |||
| VCC = 3.3 V, IPLDO = 30 mA | 3.1 | 3.22 | 3.3 | V | |||
| VCC = 9 V, IPLDO = 30 mA | 4.1 | 4.9 | 6.7 | V | |||
| VCC = 11.5 V, IPLDO = 30 mA | 4.1 | 5 | 6.7 | V | |||
| CPLDO | PLDO capacitor required for stability | 0.7 | 1 | 1.3 | µF | ||
| INTERNAL LDO | |||||||
| VINTLDO | Output Voltage | IVINT < 10 mA | 2.25 | 2.3 | 2.35 | V | |
| IVINT < 10 uA, T>80C | 2.25 | 2.3 | 2.40 | V | |||
| DC Output Voltage Accuacy | No external/internal load, VCC = 2.6 V - 11.5 V | –2 | 2 | % | |||
| Line Regulation | VCC = 2.6 V-11.5 V, IOUT = 10 mA | –2 | 2 | % | |||
| Load Regulation | IVINT = 0 mA - 10 mA, VCC = 3 V | –2 | 2 | % | |||
| Transient regulation | IVINT stepped from 0 mA to 10 mA in 1us | –8 | 8 | % | |||
| IVINT stepped from 10 mA to 0 mA in 1us | –5 | 5 | % | ||||
| PSRR | VIN = 3.0 V, IOUT = 10 mA, f = 60 Hz (200 mVpp) | 50 | dB | ||||
| IINTLDO, OUT | Output current range | 0 | 10 | mA | |||
| IINTLDO, SC | Short Circuit Current Limit | 30 | 280 | 500 | mA | ||
| VINTLDO, DO | Dropout Voltage | From PLDO to VINT, IVINT = 10 mA, PLDO = 2.2 V | 52 | 66 | mV | ||
| CINTLDO, OUT | Output Capacitor | Ceramic | 0.7 | 1 | 1.3 | µF | |
| ESR of Output Capacitor | 100 | mΩ | |||||
| MCU LDO | |||||||
| VMCULDO | Output Voltage(1) | IMCULDO < 30 mA, VCC > 2.2 V, VMCUSET = 00 (T < 80°C for no load) | 1.425 | 1.5 | 1.575 | V | |
| IMCULDO < 10 uA, VCC > 2.2 V, VMCUSET = 00, T > 80°C | 1.425 | 1.5 | 1.65 | V | |||
| IMCULDO < 30 mA, VCC > 2.6 V, VMCUSET = 01 (T < 80°C for no load) | 1.71 | 1.8 | 1.89 | V | |||
| IMCULDO < 10 uA, VCC > 2.6 V, VMCUSET = 01, T > 80°C | 1.71 | 1.8 | 1.98 | V | |||
| IMCULDO < 30 mA, VCC > 3.65 V, VMCUSET = 10 (T < 80°C for no load) | 2.38 | 2.5 | 2.63 | V | |||
| IMCULDO < 10 uA, VCC > 3.65 V, VMCUSET = 10, T > 80°C | 2.38 | 2.5 | 2.75 | V | |||
| IMCULDO < 10 mA, VCC > 3.65 V, VMCUSET = 11 (T < 80°C for no load) | 3.13 | 3.3 | 3.47 | V | |||
| IMCULDO < 10 uA, VCC > 4.5 V, VMCUSET = 11, T > 80°C | 3.13 | 3.3 | 3.60 | V | |||
| IMCULDO < 50 mA, VCC > 5.5 V, VMCUSET = 11 | 3.13 | 3.3 | 3.47 | V | |||
| DC Output Voltage Accuracy | T < 80°C | –5 | 5 | % | |||
| VMCULDO,PG | MCULDO power good threshold | VMCU rising | 75 | 82 | 95 | % | |
| VMCU falling | 65 | 78 | 85 | % | |||
| IMCULDO | Output Current Range | VCC > 2.2 V, VMCUSET = 00 | 0 | 30 | mA | ||
| VCC > 2.6 V, VMCUSET = 01 | 0 | 30 | mA | ||||
| VCC > 3.65 V, VMCUSET = 10 | 0 | 30 | mA | ||||
| VCC > 4.5 V, VMCUSET = 11 | 0 | 50 | mA | ||||
| VMCULDO, TR | MCULDO load transient regulation | IMCULDO stepped from 0 mA to 10 mA in 1us, T < 80°C | –7 | 7 | % | ||
| IMCULDO stepped from 0 mA to 10 mA in 1us, T > 80°C | –8 | 8 | % | ||||
| IMCULDO stepped from 10 mA to 0 mA in 1us, T < 80°C | –5 | 5 | % | ||||
| IMCULDO stepped from 10 mA to 0 mA in 1us, T > 80°C | –8 | 8 | % | ||||
| IMCULDO, SC | Short Circuit current limit | 72 | 162 | 253 | mA | ||
| tMCULDO, PWR | Power Up Time | CMCULDO = 1µF, time from VMCU=0V to 90% of target voltage | 600 | 1100 | µs | ||
| TMCULDO, PG | MCULDO power good deglitch time | 92 | 125 | 158 | µs | ||
| TMCULDO, MASK | MCULDO low voltage error mask time. MCULDO_ERR is masked for T_MCULDO,MASK after VMCUSET or MCU_DIS is changed. | 10 | ms | ||||
| IMCULDO, Q | Quiescent Current | IMCULDO = 0µA | 2.04 | 3 | µA | ||
| CMCULDO | Output Capacitor | Ceramic | 0.7 | 1 | 10 | µF | |
| ESR of Output Capacitor | 100 | mΩ | |||||
| RMCUSEL | MCUSEL component requirements. Not tested in production | Pull-down resistance to set VMCUSET[1:0]=00 on powerup | 558 | 620 | 682 | Ω | |
| Pull-down resistance to set VMCUSET[1:0]=01 on powerup | 0 | 10 | Ω | ||||
| Pull-up resistance to VINT to set VMCUSET[1:0]=10 on powerup | 0 | 10 | Ω | ||||
| Capacitance to set VMCUSET[1:0]=11 on powerup | 300 | 1000 | pF | ||||
| DCDC BOOST REGULATOR | |||||||
| VBST | Boost minimum output voltage. Load applied after voltage settles. Note: average output voltage depends on ripple. | IBST < 50 mA, 2.0 V < VBAT < 2.5 V, VBST = 0000, BST_CLIM[3:0] = 1111 | 2.45 | 2.7 | 2.808 | V | |
| IBST < 50 mA, 2.0 V < VBAT < 3.5 V, VBST = 0001, BST_CLIM[3:0] = 1111 | 3.55 | 3.8 | 3.952 | V | |||
| IBST < 50 mA, 2.0 V < VBAT < 4.0 V, VBST = 0010, BST_CLIM[3:0] = 1111 | 4.40 | 4.7 | 4.888 | V | |||
| IBST < 50 mA, 2.0 V < VBAT < 5.2 V, VBST = 0011, BST_CLIM[3:0] = 1111 | 5.60 | 6 | 6.24 | V | |||
| IBST < 30 mA, 2.0 V < VBAT < 8.0 V, VBST = 0100, BST_CLIM[3:0] = 1111 | 8.64 | 9 | 9.36 | V | |||
| IBST < 30 mA, 2.0 V < VBAT < 9.0 V, VBST = 0101, BST_CLIM[3:0] = 1111 | 9.6 | 10 | 10.4 | V | |||
| IBST < 30 mA, 2.0 V < VBAT < 9.5 V, VBST = 0110, BST_CLIM[3:0] = 1111 | 10.08 | 10.5 | 10.92 | V | |||
| IBST < 30 mA, 2.0 V < VBAT < 10.0 V, VBST = 0111, BST_CLIM[3:0] = 1111 | 10.56 | 11 | 11.44 | V | |||
| IBST < 30 mA, 2.0 V < VBAT < 10.5 V, VBST = 1000, BST_CLIM[3:0] = 1111 | 10.96 | 11.5 | 11.96 | V | |||
| VBST | Boost minimum output voltage. Load applied after voltage settles. Note: average output voltage depends on ripple. | IBST < 20 mA, 2.0 V < VBAT < 13.5 V, VBST = 1001, BST_CLIM[3:0] = 1111 | 14.4 | 15 | 15.6 | V | |
| VBST, PG | Power good threshold | VBST rising | 96 | % | |||
| VBST falling | 85 | ||||||
| IBST, PWRUP | Output current when boost is powering up. The boost output current is limited when VBST is below the specified voltage. | VBST = 0000, VCC = VBST < 2.7 V | 5 | mA | |||
| VBST = 0001:1000, VCC = VBST < 3.0 V | 5 | mA | |||||
| IBST, PEAK | Inductor peak current setting | BST_CLIM[3:0] = 0000, VCC=2.6 V | 4 | 30 | 70 | mA | |
| BST_CLIM[3:0] = 0001, VCC=2.6 V | 18 | 40 | 75 | mA | |||
| BST_CLIM[3:0] = 0010, 2.6 V < VCC < 3.65 V | 18 | 50 | 90 | mA | |||
| BST_CLIM[3:0] = 0011 | 18 | 60 | 105 | mA | |||
| BST_CLIM[3:0] = 0100 | 43 | 80 | 130 | mA | |||
| BST_CLIM[3:0] = 0101 | 69 | 100 | 150 | mA | |||
| BST_CLIM[3:0] = 0110 | 102 | 130 | 190 | mA | |||
| BST_CLIM[3:0] = 0111 | 133 | 160 | 220 | mA | |||
| BST_CLIM[3:0] = 1000 | 168 | 200 | 275 | mA | |||
| BST_CLIM[3:0] = 1001 | 198 | 240 | 324 | mA | |||
| BST_CLIM[3:0] = 1010 | 230 | 280 | 384 | mA | |||
| BST_CLIM[3:0] = 1011 | 262 | 320 | 444 | mA | |||
| BST_CLIM[3:0] = 1100 | 291 | 360 | 504 | mA | |||
| BST_CLIM[3:0] = 1101 | 324 | 400 | 566 | mA | |||
| BST_CLIM[3:0] = 1110 | 360 | 450 | 640 | mA | |||
| BST_CLIM[3:0] = 1111 | 398 | 500 | 720 | mA | |||
| RDS, BST | Low-side MOSFET on resistance | VCC = 3.3 V | 0 | 0.9 | 1.18 | Ω | |
| IBST,STANDBY | Standby current. Current does not include bias block or 8 MHz oscillator. | IBST = 0, BST_EN=1. | 100 | 150 | µA | ||
| CBST | Recommended external capacitance | 4.7 | µF | ||||
| LBST | Recommended external inductance | 33 | µH | ||||
| RIND, BST | Recommended inductor DC resistance | 0.5 | 0.8 | Ω | |||
| TBST, PG | Boost power good deglitch time | 110 | 141 | 172 | µs | ||
| TBST, ACT | Boost activity monitor delay time—BST_nACT is set to 1 when the boost converter has not switched for T_BST,ACT while BST_EN=1. Not tested in production. | T_BSTACT[1:0] = 00 | 0.1 | 0.156 | 0.2 | ms | |
| T_BSTACT[1:0] = 01 | 0.9 | 1 | 1.1 | ||||
| T_BSTACT[1:0] = 10 | 9.4 | 10 | 10.6 | ||||
| T_BSTACT[1:0] = 11 | 94 | 100 | 106 | ||||
| TBST, MASK | Boost converter BST_ERR mask time. BST_ERR is masked for TBST,MASK after VBST or BST_EN is changed. | 10 | ms | ||||
| PHOTO CHAMBER INPUT STAGE AMPLIFIER | |||||||
| VPDO | Output voltage range | PAMP_EN=1, Feedback network: 1.5M Ω, 10pF | 0 | 0.5 | V | ||
| fPDIN, BW | Unity Gain Bandwidth | 1 | 5 | MHz | |||
| VPDIN, OFS | Input Offset Voltage | -530 | -195 | 240 | µV | ||
| VPDO, OFS | Output Offset Voltage | 50mV applied to PDP with 1.5MΩ series resistor. 1.5MΩ resistor connects PDN to PDO. Voltage measured between 50mV and PDO. | -10 | 10 | mV | ||
| fPDIN, CHOP | Chop Frequency | 2 | MHz | ||||
| TPDIN, SET | Input amplifier settling time. Time between stepping the current and measuring 90% of the final value + 10% of the initial value at PDO | Feedback network: 1.5M Ω, 10pF. 1 nA to 10 nA applied from PDN to PDP. 0V reference | 0 | 30 | 40 | µs | |
| Feedback network: 1.5MΩ, 5pF. 1.5MΩ connected from PDP to PREF. 1 nA to 10 nA applied from PDN to PDP. PREF_SEL=1 | 0 | 20 | 40 | µs | |||
| IPDIN, ACT | Active current. Current does not include bias block or 8 MHz oscillator. | 175 | 210 | µA | |||
| PHOTO CHAMBER GAIN STAGE AMPLIFIER | |||||||
| GPGAIN | Closed Loop Gain Slope (VAOUT_PH2-VAOUT_PH1)/(VSIG2-VSIG1). Apply VSIG1 from PREF to PDO and measure AOUT_PH. Apply VSIG2 from COTEST to PDO and measure AOUT_PH | VPDO1=10mV, VPDO2=20mV, PREF_SEL=0, PGAIN[1:0] = 00 | 4.75 | 4.9 | 5.05 | V/V | |
| VPDO1=10mV, VPDO2=20mV, PREF_SEL=0, PGAIN[1:0] = 01 | 10.67 | 11 | 11.33 | V/V | |||
| VPDO1=10mV, VPDO2=20mV, PREF_SEL=0, PGAIN[1:0] = 10 | 19.4 | 20 | 20.6 | V/V | |||
| VPDO1=10mV, VPDO2=20mV, PREF_SEL=0, PGAIN[1:0] = 11 | 33.95 | 35 | 36.05 | V/V | |||
| Closed Loop Gain Slope (VAOUT_PH2-VAOUT_PH1)/(VSIG2-VSIG1). Apply VSIG1 from PREF to PDO and measure AOUT_PH. Apply VSIG2 from PREF to PDO and measure AOUT_PH | VSIG1=10mV, VSIG2=20mV, PREF_SEL=1, PGAIN[1:0] = 00 | 4.61 | 4.75 | 4.89 | V/V | ||
| VSIG1=10mV, VSIG2=20mV, PREF_SEL=1, PGAIN[1:0] = 01 | 10.09 | 10.4 | 10.71 | V/V | |||
| VSIG1=10mV, VSIG2=20mV, PREF_SEL=1, PGAIN[1:0] = 10 | 17.94 | 18.5 | 19.06 | V/V | |||
| VSIG1=10mV, VSIG2=20mV, PREF_SEL=1, PGAIN[1:0] = 11 | 31.28 | 32.25 | 33.22 | V/V | |||
| FPGAIN, BW | Unity Gain Bandwidth | 1 | 5 | 8 | MHz | ||
| VPGAIN, OFS | Input offset Voltage | -6 | 5 | mV | |||
| TPGAIN, SET | Gain amplifier settling time. Time between stepping the voltage and measuring 90% of the final value + 10% of the initial value at AOUT_PH | PGAIN[1:0]=00. PDO stepped from 3mV to 30mV. PREF_SEL=0 | 1.8 | 2.522 | µs | ||
| IPGAIN, ACT | Active current. Current does not include bias block. | 1.0 V input voltage, PGAIN[1:0] = 00, PGAIN_EN = 1 | 40 | 70 | µA | ||
| LED LDO | |||||||
| VLEDLDO | LEDLDO output voltage range | 7.5 | 10 | V | |||
| VLEDLDO,ACC | LDO output accuracy | I_LEDLDO = 0uA to 100uA | -5 | 5 | % | ||
| VLEDLDO, RES | LED LDO output step size | 0.5 | V | ||||
| ILEDLDO, OUT | LDO output current limit | 1 | 3 | 6 | mA | ||
| ILEDLDO, Q | Quiescent current. Current does not include bias block. | 31 | 60 | µA | |||
| VLEDLDO, DROP | LED LDO dropout voltage | VBST=7V, ILEDLDO=100uA | VBST=7V, ILEDLDO=100uA | 565 | 1000 | mV | |
| LED DRIVER A | |||||||
| NPDACA, RES | Resolution | 8 | Bits | ||||
| VCSA | CSA output voltage | TJ = 27°C TEMPCOA[1:0] = 00, PDAC_A = 00, RCSA=1 kOhms, VDINA=3V | 274 | 299 | 323 | mV | |
| TJ = 27°C TEMPCOA[1:0] = 00, PDAC_A = FF, RCSA=1 kOhms, VDINA=3V | 567 | 593 | 619 | mV | |||
| TJ = 27°C TEMPCOA[1:0] = 01, PDAC_A = 00, RCSA=1 kOhms, VDINA=3V | 252 | 277 | 301 | mV | |||
| TJ = 27°C TEMPCOA[1:0] = 01, PDAC_A = FF, RCSA=1 kOhms, VDINA=3V | 546 | 572 | 597 | mV | |||
| TJ = 27°C TEMPCOA[1:0] = 10, PDAC_A = 00, RCSA=1 kOhms, VDINA=3V | 164 | 188 | 213 | mV | |||
| TJ = 27°C TEMPCOA[1:0] = 10, PDAC_A = FF, RCSA=1 kOhms, VDINA=3V | 458 | 484 | 510 | mV | |||
| TJ = 27°C TEMPCOA[1:0] = 11, PDAC_A = 00, RCSA=1 kOhms, VDINA=3V | 54 | 79 | 104 | mV | |||
| TJ = 27°C TEMPCOA[1:0] = 11, PDAC_A = FF, RCSA=1 kOhms, VDINA=3V | 350 | 376 | 403 | mV | |||
| VPDACA, STEP | DAC step size | 1.18 | mV | ||||
| INL | -10 | 10 | LSB | ||||
| DNL | -1.5 | 1.5 | LSB | ||||
| tPDACA, SET | Settling Time | 1 | 5 | µs | |||
| KPDACA, COMP | CSA temperature compensation coefficient | TEMPCOA[1:0] = 00, PDAC_A[7:0] = 0x00, RCSA=1 kOhms, VDINA=3V, TJ=0°C, 50°C | 0.174 | 0.347 | 0.521 | mV/°C | |
| TEMPCOA[1:0] = 01, PDAC_A[7:0] = 0x00, RCSA=1 kOhms, VDINA=3V, TJ=0°C, 50°C | 0.208 | 0.416 | 0.624 | mV/°C | |||
| TEMPCOA[1:0] = 10, PDAC_A[7:0] = 0x00, RCSA=1 kOhms, VDINA=3V, TJ=0°C, 50°C | 0.346 | 0.693 | 1.039 | mV/°C | |||
| TEMPCOA[1:0] = 11, PDAC_A[7:0] = 0x00, RCSA=1 kOhms, VDINA=3V, TJ=0°C, 50°C | 0.520 | 1.040 | 1.560 | mV/°C | |||
| VDINA, DROP | Dropout voltage. Voltage required between DINA and CSA for current regulation. | PLDO=3.6V, RCSA=820mΩ, TEMPCOA[1:0]=11, PDAC_A[7:0]=0x28, TJ=27°C (I_LED≈158mA, 0.8% temp coefficient) | 300 | mV | |||
| PLDO=3.6V, RCSA=820mΩ, TEMPCOA[1:0]=01, PDAC_A[7:0]=0x79, TJ=27°C (I_LED≈507mA, 0.1% temp coefficient) | 500 | mV | |||||
| IDINA | LED current | 0 | 550 | mA | |||
| LED DRIVER B | |||||||
| NPDACB, RES | Resolution | 8 | Bits | ||||
| VCSB | CSB output voltage | TJ = 27°C TEMPCOB[1:0] = 00, PDAC_B = 00, RCSB=1 kOhms, VDINB=3V | 271 | 299 | 327 | mV | |
| TJ = 27°C TEMPCOB[1:0] = 00, PDAC_B = FF, RCSB=1 kOhms, VDINB=3V | 562 | 594 | 626 | mV | |||
| TJ = 27°C TEMPCOB[1:0] = 01, PDAC_B = 00, RCSB=1 kOhms, VDINB=3V | 250 | 277 | 305 | mV | |||
| TJ = 27°C TEMPCOB[1:0] = 01, PDAC_B = FF, RCSB=1 kOhms, VDINB=3V | 541 | 572 | 604 | mV | |||
| TJ = 27°C TEMPCOB[1:0] = 10, PDAC_B = 00, RCSB=1 kOhms, VDINB=3V | 163 | 189 | 216 | mV | |||
| TJ = 27°C TEMPCOB[1:0] = 10, PDAC_B = FF, RCSB=1 kOhms, VDINB=3V | 456 | 486 | 516 | mV | |||
| TJ = 27°C TEMPCOB[1:0] = 11, PDAC_B = 00, RCSB=1 kOhms, VDINB=3V | 55 | 81 | 108 | mV | |||
| TJ = 27°C TEMPCOB[1:0] = 11, PDAC_B = FF, RCSB=1 kOhms, VDINB=3V | 350 | 379 | 408 | mV | |||
| VPDACB, STEP | DAC step size | 1.18 | mV | ||||
| INL | -10 | 10 | LSB | ||||
| DNL | -1.5 | 1.5 | LSB | ||||
| tPDACB, SET | Settling time | 1 | 5 | µs | |||
| KPDACB, COMP | CSB temperature compensation coefficient | TEMPCOB[1:0] = 00, PDAC[7:0] = 0x00, RCSB=1 kOhms, VDINB=3V, TJ=0°C, 50°C | 0.174 | 0.347 | 0.521 | mV/°C | |
| TEMPCOB[1:0] = 01, PDAC[7:0] = 0x00, RCSB=1 kOhms, VDINB=3V, TJ=0°C, 50°C | 0.208 | 0.416 | 0.624 | mV/°C | |||
| TEMPCOB[1:0] = 10, PDAC[7:0] = 0x00, RCSB=1 kOhms, VDINB=3V, TJ=0°C, 50°C | 0.346 | 0.693 | 1.039 | mV/°C | |||
| TEMPCOB[1:0] = 11, PDAC[7:0] = 0x00, RCSB=1 kOhms, VDINB=3V, TJ=0°C, 50°C | 0.520 | 1.040 | 1.560 | mV/°C | |||
| VDINB, DROP | Dropout voltage. Voltage required between DINB and CSB for current regulation. | PLDO=3.6V, RCSA=820mΩ, TEMPCOB[1:0]=11, PDAC[7:0]=0x28, TJ=27°C (I_LED≈158mA, 0.8% temp coefficient) | 300 | mV | |||
| PLDO=3.6V, RCSA=820mΩ, TEMPCOB[1:0]=01, PDAC[7:0]=0x79, TJ=27°C (I_LED≈507mA, 0.1% temp coefficient) | 500 | mV | |||||
| IDINB | LED current | 0 | 550 | mA | |||
| CO TRANSIMPEDANCE AMPLIFIER | |||||||
| RI, CO | CO input resistance | COSWRI = 1 | 0.7 | 1 | 1.5 | kΩ | |
| RF, CO | CO feedback resistance | COGAIN[1:0] = 00, COSWRG = 1 | 770 | 1100 | 1430 | kΩ | |
| COGAIN[1:0] = 01, COSWRG = 1 | 210 | 300 | 390 | kΩ | |||
| COGAIN[1:0] = 10, COSWRG = 1 | 350 | 500 | 650 | kΩ | |||
| COGAIN[1:0] = 11, COSWRG = 1 | 560 | 800 | 1040 | kΩ | |||
| VIN, COP | CO amplifier input voltage (COP pin) | 0 | 0.6 | V | |||
| VIN, CON | CO amplifier input voltage (CON pin) | 0 | 0.6 | V | |||
| VOFFS, CO | CO amplifier input offset voltage | -130 | 94 | 300 | µV | ||
| VOUT, COO | CO amplifier output voltage (COO pin) | 0.1 | 2 | V | |||
| ICO, Q | CO amplifier quiescent current | 0.63 | 2.1 | µA | |||
| fCO, BW | CO amplifier unity gain bandwidth | 5 | 12 | 20 | kHz | ||
| fCO, CHOP | CO amplifier chop frequency | 3.8 | 4 | 4.2 | kHz | ||
| RCOO | CO amplifier output resistance | COSWRO = 1 | 70 | 95 | 130 | kΩ | |
| VCOPREF | CO amplifier reference voltage | COSWREF=1, COREF[1:0] = 00, TJ = 27°C | 0.89 | 1.14 | 1.47 | mV | |
| COSWREF=1, COREF[1:0] = 00, TJ = -40°C to 85°C | 0.86 | 1.14 | 1.66 | ||||
| COSWREF=1, COREF[1:0] = 01, TJ = 27°C | 1.75 | 2.23 | 2.7 | ||||
| COSWREF=1, COREF[1:0] = 01, TJ = -40°C to 85°C | 1.7 | 2.23 | 2.95 | ||||
| COSWREF=1, COREF[1:0] = 10, TJ = 27°C | 2.6 | 3.23 | 4 | ||||
| COSWREF=1, COREF[1:0] = 10, TJ = -40°C to 85°C | 2.55 | 3.23 | 4.24 | ||||
| COSWREF=1, COREF[1:0] = 11, TJ = 27°C | 3.45 | 4.43 | 5.38 | ||||
| COSWREF=1, COREF[1:0] = 11, TJ = -40°C to 85°C | 3.4 | 4.43 | 5.48 | ||||
| RCOTEST, PU | COTEST pull up FET resistance | 0.36 | 0.76 | 1.1 | kΩ | ||
| RCOTEST, PD | COTEST pull-down FET resistance | 0.25 | 0.37 | 0.82 | kΩ | ||
| INTERCONNECT | |||||||
| ISNK, INT_UNIT | Interconnect sink current | INT_DIR = 1, INT_MCU = 0 V, VBST = 11.5 V, INT_UNIT = 0.8 V | 4 | 7.35 | 15 | mA | |
| INT_DIR = 1, INT_MCU = 0 V, VBST = 11.5 V, INT_UNIT = 2.0 V | 5 | 14.7 | 30 | mA | |||
| INT_DIR = 1, INT_MCU = 0 V, VBST = 11.5 V, INT_UNIT = 6.0 V | 9 | 19.4 | 30 | mA | |||
| INT_DIR = 1, INT_MCU = 0 V, VBST = 11.5 V, INT_UNIT = 10 V | 9 | 19.0 | 30 | mA | |||
| ISRC, INT_UNIT | Interconnect source current | INT_DIR = 1, INT_MCU = VMCU, VBST = 11.5 V, INT_UNIT = 0.8 V | 4 | 7.6 | 15 | mA | |
| INT_DIR = 1, INT_MCU = VMCU, VBST = 11.5 V, INT_UNIT = 2.0 V | 4 | 7.6 | 15 | mA | |||
| INT_DIR = 1, INT_MCU = VMCU, VBST = 11.5 V, INT_UNIT = 6.0 V | 4 | 7.0 | 13 | mA | |||
| INT_DIR = 1, INT_MCU = VMCU, VBST = 11.5 V, INT_UNIT = 10 V | 1 | 1.6 | 4 | mA | |||
| tINT, DEG | Interconnect deglitch time | INT_DIR = 0, INT_DEG[1:0] = 00 | 0 | 0 | 0.065 | ms | |
| INT_DIR = 0, INT_DEG[1:0] = 01 | 0.090 | 0.125 | 0.160 | ||||
| INT_DIR = 0, INT_DEG[1:0] = 10 | 0.9 | 1 | 1.1 | ||||
| INT_DIR = 0, INT_DEG[1:0] = 11 | 19.4 | 20 | 20.6 | ||||
| IINT, Q | Interconnect standby current | INT_DIR = 0 | 0.25 | 0.5 | uA | ||
| VINT_UNIT, IHI | Interconnect input high threshold voltage | INT_HYS = 0 | 1.3 | 2.0 | 2.7 | V | |
| VINT_UNIT, IHI | Interconnect input high threshold voltage | INT_HYS = 1 | 1.3 | 2.0 | 2.7 | V | |
| VINT_UNIT, ILO | Interconnect low threshold voltage | INT_HYS = 0 | 0.5 | 0.8 | 1.1 | V | |
| VINT_UNIT, ILO | Interconnect low threshold voltage | INT_HYS = 1 | 1.2 | 1.8 | 2.7 | V | |
| VINT_UNIT, HYS | Interconnect input hysteresis | INT_HYS = 0 | 0.7 | 1.2 | 1.7 | V | |
| INT_HYS = 1 | 0.01 | 0.2 | 0.3 | V | |||
| RINT_UNIT, PD | Interconnect input pulldown resistance | INT_PD=1 | 65 | 107 | 165 | kΩ | |
| INT_PD=0 | 3.5 | 41 | 56 | MΩ | |||
| HORN DRIVER | |||||||
| VOH, HORNSL | HORNSL output high voltage | VBST = 11.5 V, IHORNSL = –16 mA | 11 | 11.3 | V | ||
| VOL, HORNSL | HORNSL output low voltage | VBST = 11.5 V, IHORNSL = 16 mA | 0.1 | 0.5 | V | ||
| VOH, HORNBR | HORNBR output high voltage | VBST = 11.5 V, IHORNBR = –16 mA | 11 | 11.3 | V | ||
| VOL, HORNBR | HORNBR output low voltage | VBST = 11.5 V, IHORNBR = 16 mA | 0.1 | 0.5 | V | ||
| tR, HORNSL2 | HORNSL rise time, 2 terminal | VBST=11.5V, no load, HORNSEL=0, HORNFB from 0 to VMCU. Time from VHORNSL=1.15V to VHORNSL=10.35V | 10 | 20 | ns | ||
| tF, HORNSL2 | HORNSL fall time, 2 terminal | VBST=11.5V, no load, HORNSEL=0, HORNFB from VMCU to 0. Time from VHORNSL=10.35V to VHORNSL=1.15V | 10 | 20 | ns | ||
| tR, HORNBR2 | HORNBR rise time, 2 terminal | VBST=11.5V, no load, HORNSEL=0, HBEN from 0 to VMCU. Time from VHORNBR=1.15V to VHORNBR=10.35V | 10 | 20 | ns | ||
| tF, HORNBR2 | HORNBR fall time, 2 terminal | VBST=11.5V, no load, HORNSEL=0, HBEN from VMCU to 0. Time from VHORNBR=10.35V to VHORNBR=1.15V | 10 | 20 | ns | ||
| tR, HORNSL3 | HORNSL rise time, 3 terminal | VBST=11.5V, CHORNSL=82nF to GND, HORNSEL=1, HORN_THR=00, HORNFB from 0V to 3V. Time from VHORNSL=1.15V to VHORNSL=10.35V | 2.9 | 5 | µs | ||
| tF, HORNSL3 | HORNSL fall time, 3 terminal | VBST=11.5V, CHORNSL=82nF to GND, HORNSEL=1, HORN_THR=00, HORNFB from 3V to 0V. Time from VHORNSL=10.35V to VHORNSL=1.15V | 2.3 | 5 | µs | ||
| tR, HORNBR3 | HORNBR rise time, 3 terminal | VBST=11.5V, CHORNSL=82nF to GND, HORNSEL=1, HORN_THR=00, HORNFB from 3V to 0V. Time from VHORNBR=1.15V to VHORNBR=10.35V | 3.1 | 5 | µs | ||
| tF, HORNBR3 | HORNBR fall time, 3 terminal | VBST=11.5V, CHORNSL=82nF to GND, HORNSEL=1, HORN_THR=00, HORNFB from 0V to 3V. Time from VHORNBR=10.35V to VHORNBR=1.15V | 2.5 | 5 | µs | ||
| VIH2, HORNFB | Horn driver input high voltage. HBEN and HORNFB | VBST = 11.5 V, HORNSEL = 0 | 0.35×VMCU | 0.7× VMCU | V | ||
| VIL2, HORNFB | Horn driver input low voltage. HBEN and HORNFB | VBST = 11.5 V, HORNSEL = 0 | 0.25×VMCU | 0.65×VMCU | V | ||
| tSKEW,HIGH | Horn driver output high delay mismatch. Difference in output delay between HORNFB to HORNSL and HBEN to HORNBR | HORNSEL=0, VBST=11.5V, HORNFB and HBEN switch from 0 to VMCU. | 0 | 1 | 10 | ns | |
| tSKEW,LOW | Horn driver output low delay mismatch. Difference in output delay between HORNFB to HORNSL and HBEN to HORNBR | HORNSEL=0, VBST=11.5V, HORNFB and HBEN switch from VMCU to 0. | 0 | 2 | 10 | ns | |
| IHORN,Q | Horn driver quiescent current. Current does not include bias block. | HORNSEL=0, VBST=11.5V, HORNFB, HBEN=0, HORN_EN=1. Current from VBST, VCC pins measured | 0 | 80.1 | 150 | uA | |
| HORNSEL=1, VBST=11.5V, HORNFB=0, HBEN=1, HORN_EN=1. Current from VBST, VCC pins measured | 0 | 65 | 150 | uA | |||
| ANALOG MULTIPLEXER | |||||||
| VMUX | Multiplexer buffer input signal voltage range | AMUX_BYP=0 | 0.05 | 2 | V | ||
| GMUX, GAIN | Multiplexer bufffer output gain | AMUX_BYP=0 | 0.99 | 1 | 1.01 | V/V | |
| VMUX, OFFS | Multiplexer buffer offset voltage | AMUX_BYP=0 | -8 | -0.5 | 8 | mV | |
| tMUX, EN | Multiplexer buffer enable settling time | AMUX_BYP=0, AMUX_SEL stepped from 000 to 011 with PDO=2V, PAMP_EN=0. Time until AMUX reaches 99% of its final value | 0 | 10 | 15 | us | |
| tMUX, STEP | Multiplexer buffer input step settling time | AMUX_BYP=0, AMUX_SEL=011, PDO stepped from 50mV to 2V, PAMP_EN=0. Time until AMUX reaches 99% of its final value | 0 | 10 | 15 | us | |
| fMUX, BW | Multiplexer bandwidth | AMUX_BYP=0 | 0.5 | 1 | 25 | MHz | |
| IMUX, OUT | Multiplexer output current | AMUX_BYP=0 | –10 | 10 | uA | ||
| IMUX, Q | Multiplexer quiescent current. Current does not include bias block. | AMUX_BYP=0 | 8.3 | 50 | uA | ||
| CMUX | Multiplexer buffer output capacitor required for stability | AMUX_BYP=0 | 150 | 1000 | pF | ||
| BATTERY TEST | |||||||
| IBATTEST | Battery test load current. | VBST = 4.5 V to 11.5 V, IBATTEST = 000 | 9.15 | 10 | 10.76 | mA | |
| VBST = 4.5 V to 11.5 V, IBATTEST = 001 | 11.13 | 12 | 12.64 | mA | |||
| VBST = 4.5 V to 11.5 V, IBATTEST = 010 | 12.94 | 14 | 14.89 | mA | |||
| VBST = 4.5 V to 11.5 V, IBATTEST = 011 | 14.65 | 16 | 17.29 | mA | |||
| VBST = 4.5 V to 11.5 V, IBATTEST = 100 | 16.3 | 18 | 19.63 | mA | |||
| VBST = 4.5 V to 11.5 V, IBATTEST = 101 | 17.96 | 20 | 22.06 | mA | |||
| tBATTEST,RISE | Battery test rise time. Time from enabling battery test until 90% of target current is reached | VBST=10V, IBATTEST=101 | 10 | us | |||
| tBATTEST,FALL | Battery test fall time. Time from disabling battery test until 10% of initial current is reached | VBST=10V, IBATTEST=101 | 10 | us | |||
| OSCILLATOR, REFERENCE SYSTEM | |||||||
| fOSC8 | Oscillator frequency | 8 | MHz | ||||
| Frequency accuracy | TA = -10°C to 70°C | –3 | 3 | % | |||
| fOSC32 | Low-power Oscillator frequency | 32 | kHz | ||||
| Frequency accuracy | TA = -10°C to 70°C | –3 | 3 | % | |||
| TTIMEOUT | Error timeout time | 0.9 | 1 | 1.1 | s | ||
| IREF0P3, Q | REF0P3 buffer quiescent current | VCC current difference between REF0P3_EN=0 and REF0P3=1. IREF0P3=0 µA | 0.38 | 0.76 | µA | ||
| CREF0P3 | REF0P3 output capacitor required for stability | 0.7 | 1 | 1.5 | nF | ||
| TREF0P3, SET | REF0P3 settling time | From REF0P3 enabled to 99% of final output voltage. CREF0P3=1nF, IREF0P3=0 µA | 1 | 1.8 | ms | ||
| VREF0P3, OUT | REF0P3 output voltage | IREF0P3 = 10 µA | 270 | 300 | 330 | mV | |
| IREF0P3 = -25 µA | 270 | 300 | 330 | mV | |||
| IVCCLOW,Q | VCC_LOW monitor quiescent current | 0.9 | 2 | uA | |||
| IO BUFFERS | |||||||
| VIO, ILO | IO buffer input low threshold | LEDEN, CSEL, INT_MCU, GPIO | 0.3×VMCU | 0.7× VMCU | V | ||
| VIO, IHI | IO buffer input high threshold | LEDEN, CSEL, INT_MCU, GPIO | 0.3×VMCU | 0.7× VMCU | V | ||
| IIO, LEAK | IO buffer input leakage current | LEDEN | 100 | nA | |||
| HBEN | 100 | nA | |||||
| CSEL | 100 | nA | |||||
| VIO, OL | IO buffer output low-level | INT_MCU, GPIO. IIO = 3 mA, VMCU = 1.8 V | 0 | 0.19 | 0.6 | V | |
| INT_MCU, GPIO. IIO = 1 mA, VMCU = 1.5 V | 0 | 0.20 | 0.6 | V | |||
| VIO, OH | IO buffer output high-level. Spec is the voltage drop from VMCU (i.e. VMCU - VOH) | INT_MCU, GPIO. IIO = -3 mA, VMCU = 1.8 V | 0 | 0.30 | 0.6 | V | |
| INT_MCU, GPIO. IIO = -1 mA, VMCU = 1.5 V | 0 | 0.37 | 0.6 | V | |||
| CIN, IO | Input capacitance | LEDEN, CSEL | 2 | 10 | pF | ||
| HBEN | 2 | 10 | pF | ||||
| INT_MCU, GPIO | 2 | 10 | pF | ||||
| RIO,PD | IO buffer input pulldown resistor | INT_MCU, GPIO | 0.8 | 10 | 50 | MΩ | |
| THERMAL WARNING | |||||||
| TWARNING | Thermal trip point | 110 | C | ||||
| THERMAL SHUTDOWN | |||||||
| TSHTDWN | Thermal trip point | 125 | C | ||||
| Thermal hysteresis | 5 | 15 | 20 | ||||
| tOTS,MASK | Thermal error mask time. OTS_ERR is masked for tOTS,MASK after device fully powers up or OTS_EN set to 1 | 300 | 350 | us | |||
| I2C IO | |||||||
| VI2C,IL | Low-level input voltage | -0.5 | 0.3 × VMCU | V | |||
| VI2C,IH | High-level input voltage | 0.7 × VMCU | V | ||||
| VI2C,HYS | Hysteresis of Schmitt trigger inputs |
0.05 × VMCU | V | ||||
| VI2C,OL | Low-level output voltage | 3 mA sink current; VMCU >2V | 0 | 0.4 | V | ||
| 2 mA sink current; VMCU < 2V | 0 | 0.2 × VMCU | V | ||||
| II2C,OL | Low-level output current | VOL = 0.4 V | 2.5 | mA | |||
| VOL = 0.6 V | 4 | mA | |||||
| II2C,IN | Input current to each I/O pin | 0.1VMCU < VI < 0.9VMCUmax | -10 | 10 | µA | ||
| CI2C,IN | Capacitance for each I/O pin | 10 | pF | ||||
| tI2C,OF | Output fall time | From VIHmin to VILmax, Standard-Mode | 250 | ns | |||
| From VIHmin to VILmax, Fast-Mode | 250 | ns | |||||
| tI2C,SP | Pulse width of spikes that must be suppressed by the input filter | 0 | 50 | ns | |||
| I2C BUS LINES | |||||||
| fSCL | SCL clock frequency, Standard-Mode | 0 | 100 | kHz | |||
| SCL clock frequency Fast-Mode | 0 | 400 | kHz | ||||
| tHD;STA | hold time (repeated) START condition, Standard-Mode | After this period, the first clock pulse is generated. | 4 | µs | |||
| hold time (repeated) START condition, Fast-Mode | After this period, the first clock pulse is generated. | 0.6 | µs | ||||
| tSCL ,LOW | LOW period of the SCL clock, Standard-Mode | 4.7 | µs | ||||
| LOW period of the SCL clock, Fast-Mode | 1.3 | µs | |||||
| tSCL,HIGH | HIGH period of the SCL clock, Standard-Mode | 4 | µs | ||||
| HIGH period of the SCL clock, Fast-Mode | 0.6 | µs | |||||
| tSU;STA | set-up time for a repeated START condition, Standard-Mode | 4.7 | µs | ||||
| set-up time for a repeated START condition, Fast-Mode | 0.6 | µs | |||||
| tHD;DAT | data hold time, Standard-Mode | CBUS compatible masters | 5 | µs | |||
| tHD;DAT | I2C-bus devices | 0 | µs | ||||
| tHD;DAT | data hold time, Fast-Mode | CBUS compatible masters | 0 | µs | |||
| tHD;DAT | I2C-bus devices | 0 | µs | ||||
| tSU;DAT | data set-up time, Standard-Mode | 250 | ns | ||||
| data set-up time, Fast-Mode | 100 | ns | |||||
| tI2C,RISE | rise time of both SDA and SCL signals, Standard-Mode | 1000 | ns | ||||
| rise time of both SDA and SCL signals, Fast-Mode | 20 | 300 | ns | ||||
| tI2C,FALL | fall time of both SDA and SCL signals, Standard-Mode | 300 | ns | ||||
| fall time of both SDA and SCL signals, Fast-Mode | 20 × (VMCU / 5.5 V) | 300 | ns | ||||
| tSU;STO | set-up time for STOP condition, Standard-Mode | 4 | µs | ||||
| set-up time for STOP condition, Fast-Mode | 0.6 | µs | |||||
| tBUF | bus free time between a STOP and START condition, Standard-Mode | 4.7 | µs | ||||
| bus free time between a STOP and START condition, Fast-Mode | 1.3 | µs | |||||
| tVD;DAT | data valid time, Standard-Mode | 3.45 | µs | ||||
| data valid time, Fast-Mode | 0.9 | µs | |||||
| tVD;ACK | data valid acknowledge time, Standard-Mode | 3.45 | µs | ||||
| data valid acknowledge time, Fast-Mode | 0.9 | µs | |||||
| CBUS | capacitive load for each bus line, Standard-Mode | 400 | pF | ||||
| capacitive load for each bus line, Fast-Mode | 250 | pF | |||||
| VNL | noise margin at the LOW level | for each connected device (including hysteresis) | 0.1 × VMCU | V | |||
| VNH | noise margin at the HIGH level | for each connected device (including hysteresis) | 0.2 × VMCU | V | |||