SNVSCF2 November   2025 LM65680

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Related Products
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
    2. 5.2 Pinout Design for Clearance and FMEA
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Descriptions
      1. 7.3.1  Input Voltage Range (VIN1, VIN2)
      2. 7.3.2  High-Voltage Bias Supply Subregulator (VCC, BIAS)
      3. 7.3.3  Precision Enable and Adjustable Input Voltage UVLO (EN/UVLO)
      4. 7.3.4  Output Voltage Setpoint (FB, BIAS)
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Mode Selection and Clock Synchronization (MODE/SYNC)
        1. 7.3.6.1 Clock Synchronization
        2. 7.3.6.2 Clock Locking
      7. 7.3.7  Device Configuration (CNFG/SYNCOUT)
      8. 7.3.8  Dual-Random Spread Spectrum (DRSS)
      9. 7.3.9  High-Side MOSFET Gate Drive (BST)
      10. 7.3.10 Configurable Soft Start (SS)
        1. 7.3.10.1 Recovery From Dropout
      11. 7.3.11 Protection Features
        1. 7.3.11.1 Power-Good Monitor (PG)
        2. 7.3.11.2 Overcurrent and Short-Circuit Protection
        3. 7.3.11.3 Hiccup-Mode Protection
        4. 7.3.11.4 Thermal Shutdown
      12. 7.3.12 Two-Phase, Single-Output Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Buck Inductor
        2. 8.1.1.2 Output Capacitors
        3. 8.1.1.3 Input Capacitors
        4. 8.1.1.4 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
      3. 8.1.3 Maximum Ambient Temperature
        1. 8.1.3.1 Derating Curves
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – 5V, 8A Synchronous Buck Regulator With Wide Input Voltage Range and High Efficiency
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2  Choosing the Switching Frequency
          3. 8.2.1.2.3  Buck Inductor Selection
          4. 8.2.1.2.4  Input Capacitor Selection
          5. 8.2.1.2.5  Output Capacitors
          6. 8.2.1.2.6  Output Voltage Setpoint
          7. 8.2.1.2.7  Compensation Components
          8. 8.2.1.2.8  Setting the Input Voltage UVLO
          9. 8.2.1.2.9  EMI Mitigation, RDRSS
          10. 8.2.1.2.10 Bootstrap Capacitor, CBST
        3. 8.2.1.3 Application Curves
      2.      Design 2 – High Efficiency, 48V to 12V, 400kHz Synchronous Buck Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Buck Inductor Selection
          2. 8.2.2.2.2 Input Capacitor Selection
          3. 8.2.2.2.3 Output Capacitors
          4. 8.2.2.2.4 Output Voltage Setpoint
          5. 8.2.2.2.5 Compensation Components
          6. 8.2.2.2.6 Feedforward Capacitor
          7. 8.2.2.2.7 Soft-Start Capacitor
        3. 8.2.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Thermal Design and Layout
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 Low-EMI Design Resources
        2. 9.2.1.2 Thermal Design Resources
        3. 9.2.1.3 Multiphase Design Resources
        4. 9.2.1.4 PCB Layout Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The LM65680/60/40 is a family of high efficiency, high power density, low-EMI buck converters. These converters operate over a wide input voltage range of 3.5V to 65V with pin-selectable fixed output voltages of 3.3V and 5V, or an adjustable output voltage from 0.8V to 60V. Up to two converters can be set up in interleaved mode (paralleled outputs) with accurate current sharing to support up to 16A of output current.

The peak current-mode control architecture with 36ns minimum on-time allows high conversion ratios at high frequencies, fast transient response, and excellent load and line regulation. If the minimum on-time or minimum off-time does not support the desired conversion ratio, the switching frequency automatically reduces. This feature allows regulation to be maintained during line transients events, such as load dump and cold crank.

The LM65680/60/40 is designed to minimize end-product cost and size while operating in high-performance industrial environments. The device has a resistor-programmable switching frequency from 300kHz to 2.2MHz. Internal compensation and an accurate current limit scheme minimize BOM cost and component count.

Designed for low conducted and radiated emissions, the LM65680/60/40 includes the following features:

  • Pin-configurable switch node slew-rate control
  • Dual-random spread spectrum (DRSS) frequency modulation
  • Symmetrical pinout that enables low parasitic inductance in the power loops
  • Wide switching frequency range of 300kHz to 2.2MHz
  • Pin-configurable AUTO or FPWM mode along with external clock synchronization capability
Together, these features can eliminate shielding and other expensive EMI mitigation measures.

To use the device in reliability-conscious environments, the LM65680/60/40 has a package with enlarged corner terminals for improved board-level reliability and wettable flanks that facilitate optical inspection during manufacturing.