ZHCSQZ2 November   2025 LM65680

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 相关产品
  6. 引脚配置和功能
    1. 5.1 可润湿侧翼
    2. 5.2 针对间隙和 FMEA 进行引脚排列设计
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性描述
      1. 7.3.1  输入电压范围(VIN1、VIN2)
      2. 7.3.2  高压偏置电源子稳压器(VCC、BIAS)
      3. 7.3.3  精度使能和可调节电压 UVLO (EN/UVLO)
      4. 7.3.4  输出电压设定点(FB、BIAS)
      5. 7.3.5  开关频率 (RT)
      6. 7.3.6  模式选择和时钟同步 (MODE/SYNC)
        1. 7.3.6.1 时钟同步
        2. 7.3.6.2 时钟锁定
      7. 7.3.7  设备配置 (CNFG/SYNCOUT)
      8. 7.3.8  双随机展频 (DRSS)
      9. 7.3.9  高侧 MOSFET 和栅极驱动 (BST)
      10. 7.3.10 可配置软启动 (SS)
        1. 7.3.10.1 从压降中恢复
      11. 7.3.11 保护功能
        1. 7.3.11.1 电源正常监视器 (PG)
        2. 7.3.11.2 过流和短路保护
        3. 7.3.11.3 断续模式保护
        4. 7.3.11.4 热关断
      12. 7.3.12 两相单输出运行
    4. 7.4 器件功能模式
      1. 7.4.1 关断模式
      2. 7.4.2 工作模式
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 动力总成元件
        1. 8.1.1.1 降压电感器
        2. 8.1.1.2 输出电容器
        3. 8.1.1.3 输入电容器
        4. 8.1.1.4 EMI 滤波器
      2. 8.1.2 误差放大器和补偿
      3. 8.1.3 最高环境温度
        1. 8.1.3.1 降额曲线
    2. 8.2 典型应用
      1. 8.2.1 设计 1 — 具有宽输入电压范围和高效率的 5V、8A 同步降压稳压器
        1. 8.2.1.1 设计要求
        2. 8.2.1.2 详细设计过程
          1. 8.2.1.2.1  使用 WEBENCH® 工具创建定制设计方案
          2. 8.2.1.2.2  选择开关频率
          3. 8.2.1.2.3  降压电感器选择
          4. 8.2.1.2.4  输入电容器选型
          5. 8.2.1.2.5  输出电容器
          6. 8.2.1.2.6  输出电压设定点
          7. 8.2.1.2.7  补偿器件
          8. 8.2.1.2.8  设置输入电压 UVLO
          9. 8.2.1.2.9  减轻 EMI、RDRSS
          10. 8.2.1.2.10 自举电容器,CBST
        3. 8.2.1.3 应用曲线
      2.      设计 2 – 高效率 48V 至 12V 400kHz 同步降压稳压器
        1. 8.2.2.1 设计要求
        2. 8.2.2.2 详细设计过程
          1. 8.2.2.2.1 降压电感器选择
          2. 8.2.2.2.2 输入电容器选型
          3. 8.2.2.2.3 输出电容器
          4. 8.2.2.2.4 输出电压设定点
          5. 8.2.2.2.5 补偿器件
          6. 8.2.2.2.6 前馈电容器
          7. 8.2.2.2.7 软启动电容器
        3. 8.2.2.3 应用曲线
    3. 8.3 最佳设计实践
    4. 8.4 电源相关建议
    5. 8.5 布局
      1. 8.5.1 布局指南
        1. 8.5.1.1 热设计和布局
      2. 8.5.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方产品免责声明
      2. 9.1.2 开发支持
        1. 9.1.2.1 使用 WEBENCH® 工具创建定制设计方案
    2. 9.2 文档支持
      1. 9.2.1 相关文档
        1. 9.2.1.1 低 EMI 设计资源
        2. 9.2.1.2 热设计资源
        3. 9.2.1.3 多相位设计资源
        4. 9.2.1.4 PCB 布局资源
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

EMI 滤波器

开关稳压器具有负输入阻抗,该阻抗在最小输入电压和满负载下最低。欠阻尼 LC 滤波器在滤波器的谐振频率条件下具有高输出阻抗。为实现稳定性,EMI 滤波器输出阻抗必须小于转换器输入阻抗的绝对值。

方程式 14. Z I N =   - V I N m i n 2 P I N

根据 图 8-1 中的 EMI 滤波器,设计步骤如下:

  • 计算 EMI 滤波器在开关频率下所需的衰减,其中 CIN 表示转换器输入的现有电容。
  • 在 1μH 和 10μH 之间选择一个输入滤波指示器 LIN。使用较低的值来降低高电流设计中的 DC 损耗。
  • 计算输入侧滤波器电容 CF

LM65680 降压 稳压器的无源 π 级 EMI 滤波器 图 8-1 降压 稳压器的无源 π 级 EMI 滤波器

通过从傅里叶级数输入电流波形计算第一个谐波电流并乘以输入阻抗(阻抗由现有输入电容器 CIN 定义),方程式 15 在开关频率上提供所需的滤波器衰减。

方程式 15. A t t n   = 20 log I L P K π 2 × F S W × C I N   × sin π × D M A X × 1 1 µ V - V M A X

其中

  • VMAX 是适用传导 EMI 标准(例如 CISPR 32 B 类)允许的 dBμV 噪声水平。
  • CIN 是稳压器的现有输入电容。
  • DMAX 是最大占空比。
  • IL(PK) 是电感器的峰值电流。

就 EMI 滤波器设计而言,将输入端的电流建模为方波。使用 方程式 16 确定 EMI 滤波器电容 CF

方程式 16. C F = 1 L I N 10 A t t n 40 2 π × F S W 2

在开关稳压器中增加一个输入滤波器会使“控制到输出”传递函数发生变化。滤波器的输出阻抗必须足够小,以免输入滤波器显著影响稳压器的环路增益。阻抗在滤波器谐振频率下达到峰值。使用 方程式 17 计算滤波器的谐振频率。

方程式 17. f r e s = 1 2 π × L I N × C F

RD 的用途是减小滤波器在谐振频率下的峰值输出阻抗。电容器 CD 会阻碍输入电压的直流分量,从而避免 RD 上产生过大的功率损耗。电容器 CD 在谐振频率下的阻抗必须小于 RD,并且电容值必须大于输入电容器 CIN 的电容值。这可以防止 CIN 干扰主滤波器的截止频率。当滤波器的输出阻抗在谐振频率下较大(由 LIN 和 CIN 构成的滤波器具有过高的 Q 值)时,则增加阻尼。使用电解电容器 CD 来提供 方程式 18 所给出的阻尼值。

方程式 18. C D 4 × C I N

使用方程式 19 来选择阻尼电容器 RD

方程式 19. R D = L I N C I N