SNVSCF2
November 2025
LM65680
PRODUCTION DATA
1
1
Features
2
Applications
3
Description
4
Related Products
5
Pin Configuration and Functions
5.1
Wettable Flanks
5.2
Pinout Design for Clearance and FMEA
6
Specifications
6.1
Absolute Maximum Ratings
6.2
ESD Ratings
6.3
Recommended Operating Conditions
6.4
Thermal Information
6.5
Electrical Characteristics
6.6
Typical Characteristics
7
Detailed Description
7.1
Overview
7.2
Functional Block Diagram
7.3
Feature Descriptions
7.3.1
Input Voltage Range (VIN1, VIN2)
7.3.2
High-Voltage Bias Supply Subregulator (VCC, BIAS)
7.3.3
Precision Enable and Adjustable Input Voltage UVLO (EN/UVLO)
7.3.4
Output Voltage Setpoint (FB, BIAS)
7.3.5
Switching Frequency (RT)
7.3.6
Mode Selection and Clock Synchronization (MODE/SYNC)
7.3.6.1
Clock Synchronization
7.3.6.2
Clock Locking
7.3.7
Device Configuration (CNFG/SYNCOUT)
7.3.8
Dual-Random Spread Spectrum (DRSS)
7.3.9
High-Side MOSFET Gate Drive (BST)
7.3.10
Configurable Soft Start (SS)
7.3.10.1
Recovery From Dropout
7.3.11
Protection Features
7.3.11.1
Power-Good Monitor (PG)
7.3.11.2
Overcurrent and Short-Circuit Protection
7.3.11.3
Hiccup-Mode Protection
7.3.11.4
Thermal Shutdown
7.3.12
Two-Phase, Single-Output Operation
7.4
Device Functional Modes
7.4.1
Shutdown Mode
7.4.2
Active Mode
8
Application and Implementation
8.1
Application Information
8.1.1
Power Train Components
8.1.1.1
Buck Inductor
8.1.1.2
Output Capacitors
8.1.1.3
Input Capacitors
8.1.1.4
EMI Filter
8.1.2
Error Amplifier and Compensation
8.1.3
Maximum Ambient Temperature
8.1.3.1
Derating Curves
8.2
Typical Applications
8.2.1
Design 1 – 5V, 8A Synchronous Buck Regulator With Wide Input Voltage Range and High Efficiency
8.2.1.1
Design Requirements
8.2.1.2
Detailed Design Procedure
8.2.1.2.1
Custom Design With WEBENCH® Tools
8.2.1.2.2
Choosing the Switching Frequency
8.2.1.2.3
Buck Inductor Selection
8.2.1.2.4
Input Capacitor Selection
8.2.1.2.5
Output Capacitors
8.2.1.2.6
Output Voltage Setpoint
8.2.1.2.7
Compensation Components
8.2.1.2.8
Setting the Input Voltage UVLO
8.2.1.2.9
EMI Mitigation, RDRSS
8.2.1.2.10
Bootstrap Capacitor, CBST
8.2.1.3
Application Curves
Design 2 – High Efficiency, 48V to 12V, 400kHz Synchronous Buck Regulator
8.2.2.1
Design Requirements
8.2.2.2
Detailed Design Procedure
8.2.2.2.1
Buck Inductor Selection
8.2.2.2.2
Input Capacitor Selection
8.2.2.2.3
Output Capacitors
8.2.2.2.4
Output Voltage Setpoint
8.2.2.2.5
Compensation Components
8.2.2.2.6
Feedforward Capacitor
8.2.2.2.7
Soft-Start Capacitor
8.2.2.3
Application Curves
8.3
Best Design Practices
8.4
Power Supply Recommendations
8.5
Layout
8.5.1
Layout Guidelines
8.5.1.1
Thermal Design and Layout
8.5.2
Layout Example
9
Device and Documentation Support
9.1
Device Support
9.1.1
Third-Party Products Disclaimer
9.1.2
Development Support
9.1.2.1
Custom Design With WEBENCH® Tools
9.2
Documentation Support
9.2.1
Related Documentation
9.2.1.1
Low-EMI Design Resources
9.2.1.2
Thermal Design Resources
9.2.1.3
Multiphase Design Resources
9.2.1.4
PCB Layout Resources
9.3
Receiving Notification of Documentation Updates
9.4
Support Resources
9.5
Trademarks
9.6
Electrostatic Discharge Caution
9.7
Glossary
10
Revision History
11
Mechanical, Packaging, and Orderable Information
封装选项
机械数据 (封装 | 引脚)
RZY|26
MPQF691D
散热焊盘机械数据 (封装 | 引脚)
订购信息
snvscf2_oa
9.2.1.1
Low-EMI Design Resources
Texas Instruments,
Low EMI
landing page
Texas Instruments,
Tackling the EMI challenge
company blog
Texas Instruments,
An Engineer's Guide to Low EMI in DC/DC Regulators
e-book
Texas Instruments,
Designing a low-EMI power supply
video series
White papers:
Texas Instruments,
An Overview of Conducted EMI Specifications for Power Supplies
Texas Instruments,
An Overview of Radiated EMI Specifications for Power Supplies
Texas Instruments,
Time-Saving and Cost-Effective Innovations for EMI Reduction in Power Supplies
Texas Instruments,
Valuing Wide V
IN
, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications
Texas Instruments,
Improve High-Current DC/DC Regulalor EMI for Free With Optimized Power Stage Layout
application brief
Texas Instruments,
Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics
analog design journal