ZHCSQZ2 November   2025 LM65680

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 相关产品
  6. 引脚配置和功能
    1. 5.1 可润湿侧翼
    2. 5.2 针对间隙和 FMEA 进行引脚排列设计
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性描述
      1. 7.3.1  输入电压范围(VIN1、VIN2)
      2. 7.3.2  高压偏置电源子稳压器(VCC、BIAS)
      3. 7.3.3  精度使能和可调节电压 UVLO (EN/UVLO)
      4. 7.3.4  输出电压设定点(FB、BIAS)
      5. 7.3.5  开关频率 (RT)
      6. 7.3.6  模式选择和时钟同步 (MODE/SYNC)
        1. 7.3.6.1 时钟同步
        2. 7.3.6.2 时钟锁定
      7. 7.3.7  设备配置 (CNFG/SYNCOUT)
      8. 7.3.8  双随机展频 (DRSS)
      9. 7.3.9  高侧 MOSFET 和栅极驱动 (BST)
      10. 7.3.10 可配置软启动 (SS)
        1. 7.3.10.1 从压降中恢复
      11. 7.3.11 保护功能
        1. 7.3.11.1 电源正常监视器 (PG)
        2. 7.3.11.2 过流和短路保护
        3. 7.3.11.3 断续模式保护
        4. 7.3.11.4 热关断
      12. 7.3.12 两相单输出运行
    4. 7.4 器件功能模式
      1. 7.4.1 关断模式
      2. 7.4.2 工作模式
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 动力总成元件
        1. 8.1.1.1 降压电感器
        2. 8.1.1.2 输出电容器
        3. 8.1.1.3 输入电容器
        4. 8.1.1.4 EMI 滤波器
      2. 8.1.2 误差放大器和补偿
      3. 8.1.3 最高环境温度
        1. 8.1.3.1 降额曲线
    2. 8.2 典型应用
      1. 8.2.1 设计 1 — 具有宽输入电压范围和高效率的 5V、8A 同步降压稳压器
        1. 8.2.1.1 设计要求
        2. 8.2.1.2 详细设计过程
          1. 8.2.1.2.1  使用 WEBENCH® 工具创建定制设计方案
          2. 8.2.1.2.2  选择开关频率
          3. 8.2.1.2.3  降压电感器选择
          4. 8.2.1.2.4  输入电容器选型
          5. 8.2.1.2.5  输出电容器
          6. 8.2.1.2.6  输出电压设定点
          7. 8.2.1.2.7  补偿器件
          8. 8.2.1.2.8  设置输入电压 UVLO
          9. 8.2.1.2.9  减轻 EMI、RDRSS
          10. 8.2.1.2.10 自举电容器,CBST
        3. 8.2.1.3 应用曲线
      2.      设计 2 – 高效率 48V 至 12V 400kHz 同步降压稳压器
        1. 8.2.2.1 设计要求
        2. 8.2.2.2 详细设计过程
          1. 8.2.2.2.1 降压电感器选择
          2. 8.2.2.2.2 输入电容器选型
          3. 8.2.2.2.3 输出电容器
          4. 8.2.2.2.4 输出电压设定点
          5. 8.2.2.2.5 补偿器件
          6. 8.2.2.2.6 前馈电容器
          7. 8.2.2.2.7 软启动电容器
        3. 8.2.2.3 应用曲线
    3. 8.3 最佳设计实践
    4. 8.4 电源相关建议
    5. 8.5 布局
      1. 8.5.1 布局指南
        1. 8.5.1.1 热设计和布局
      2. 8.5.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方产品免责声明
      2. 9.1.2 开发支持
        1. 9.1.2.1 使用 WEBENCH® 工具创建定制设计方案
    2. 9.2 文档支持
      1. 9.2.1 相关文档
        1. 9.2.1.1 低 EMI 设计资源
        2. 9.2.1.2 热设计资源
        3. 9.2.1.3 多相位设计资源
        4. 9.2.1.4 PCB 布局资源
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
输入电容器选型

电源输入通常在开关频率下具有相对较高的源阻抗。需要高质量的输入电容器来限制输入纹波电压。通常,纹波电流会根据电容器在开关频率条件下的相对阻抗在几个输入电容器之间进行分流。

  1. 选择具有足够电压和 RMS 电流额定值的输入电容器。使用方程式 54 来计算输入电容器中的 RMS 电流,其中最坏情况工作点是输入电压为 10V 时,对应于 50% 占空比。
    方程式 31. I C I N ( r m s )   =   I O U T × D × ( 1 - D )   = 8 A   ×   0.5   ×   ( 1 - 0.5 ) = 4 A  
  2. 假设 48V 至 5V 转换的占空比约为 10%,使用方程式 43 来查找所需的输入电容:
    方程式 32. C I N     D × 1 - D × I O U T F S W × ( Δ V I N - R E S R,Cin × I O U T ) = 0.1 × 1 - 0.1 × 8 A 400 k H z   × 480 m V - 2 m Ω   ×   8 A =   4.8 µ F

    其中

    • ΔVIN 是峰值间输入纹波电压的规格。
    • RESR,Cin 是输入电容器的有效 ESR。
  3. 确认陶瓷电容器的电压系数后,选择四个 4.7µF、100V、X7R、1210 陶瓷输入电容器。每个电容器在 48VDC 时的有效电容值约为 1.3µF。将这些电容器放置在输入引脚对 [VIN1, PGND1] 和 [VIN2, PGND2] 的相邻位置。
  4. 使用 方程式 44 计算峰值间纹波电压振幅。
    方程式 33. V I N = I O U T × D × 1 - D C I N × F S W + R E S R , C i n × I O U T = 8 A × 0.1 × 1 - 0.1 4.2 μ F × 400 k H z + 2 m Ω × 8 A = 0.44 V
  5. 在 [VIN1, PGND1] 与 [VIN2, PGND2] 之间直接连接 100nF、100V、X7R、0603 规格的陶瓷电容器,以在开关转换期间提供高 di/dt 电流。此类电容器在高于 100MHz 条件下提供高自谐振频率 (SRF) 和低有效阻抗。这样可以减小电源环路寄生电感,减少开关节点电压过冲和振铃。有关更多详细信息,请参阅节 8.5.1