ZHCSIH5C june   2018  – may 2023 BQ25713 , BQ25713B

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 说明(续)
  7. 器件比较表
  8. 引脚配置和功能
  9. 规格
    1. 8.1 绝对最大额定值
    2. 8.2 ESD 等级
    3. 8.3 建议运行条件
    4. 8.4 热性能信息
    5. 8.5 电气特性
    6. 8.6 时序要求
    7. 8.7 典型特性
  10. 详细说明
    1. 9.1 概述
    2. 9.2 功能模块图
    3. 9.3 特性说明
      1. 9.3.1  从不带直流电源的电池上电
      2. 9.3.2  仅电池模式下的 Vmin 主动保护 (VAP)
      3. 9.3.3  从直流电源上电
        1. 9.3.3.1 CHRG_OK 指示器
        2. 9.3.3.2 输入电压和电流限制设置
        3. 9.3.3.3 电池电芯配置
        4. 9.3.3.4 器件高阻态状态
      4. 9.3.4  USB On-The-Go (OTG)
      5. 9.3.5  转换器运行
        1. 9.3.5.1 通过 IADPT 引脚检测电感
        2. 9.3.5.2 连续导通模式 (CCM)
        3. 9.3.5.3 脉冲频率调制 (PFM)
      6. 9.3.6  电流和功率监控器
        1. 9.3.6.1 高精度电流检测放大器(IADPT 和 IBAT)
        2. 9.3.6.2 高精度功率检测放大器 (PSYS)
      7. 9.3.7  输入源动态电源管理
      8. 9.3.8  两级适配器电流限制(峰值功率模式)
      9. 9.3.9  处理器热量指示
        1. 9.3.9.1 低功耗模式期间的 PROCHOT
        2. 9.3.9.2 PROCHOT 状态
      10. 9.3.10 器件保护
        1. 9.3.10.1 看门狗计时器
        2. 9.3.10.2 输入过压保护 (ACOV)
        3. 9.3.10.3 输入过流保护 (ACOC)
        4. 9.3.10.4 系统过压保护 (SYSOVP)
        5. 9.3.10.5 电池过压保护 (BATOVP)
        6. 9.3.10.6 电池短路
        7. 9.3.10.7 系统短路断续模式
        8. 9.3.10.8 热关断 (TSHUT)
    4. 9.4 器件功能模式
      1. 9.4.1 正向模式
        1. 9.4.1.1 采用窄 VDC 架构的系统电压调节
        2. 9.4.1.2 电池充电
      2. 9.4.2 USB On-The-Go
      3. 9.4.3 直通模式 (PTM)
    5. 9.5 编程
      1. 9.5.1 I2C 串行接口
        1. 9.5.1.1 数据有效性
        2. 9.5.1.2 START 和 STOP 条件
        3. 9.5.1.3 字节格式
        4. 9.5.1.4 确认 (ACK) 和否定确认 (NACK)
        5. 9.5.1.5 从器件地址和数据方向位
        6. 9.5.1.6 单独读取和写入
        7. 9.5.1.7 多重读取和多重写入
        8. 9.5.1.8 写入 2 字节 I2C 命令
    6. 9.6 寄存器映射
      1. 9.6.1  设置充电和 PROCHOT 选项
        1. 9.6.1.1 ChargeOption0 寄存器(I2C 地址 = 01/00h)[复位 = E70Eh]
        2. 9.6.1.2 ChargeOption1 寄存器(I2C 地址 = 31/30h)[复位 = 0211h]
        3. 9.6.1.3 ChargeOption2 寄存器(I2C 地址 = 33/32h)[复位 = 02B7h]
        4. 9.6.1.4 ChargeOption3 寄存器(I2C 地址 = 35/34h)[复位 = 0030h]
        5. 9.6.1.5 ProchotOption0 寄存器(I2C 地址 = 37/36h)[复位 = 4A65h]
        6. 9.6.1.6 ProchotOption1 寄存器(I2C 地址 = 39/38h)[复位 = 81A0h]
        7. 9.6.1.7 ADCOption 寄存器(I2C 地址 = 3B/3Ah)[复位 = 2000h]
      2. 9.6.2  充电和 PROCHOT 状态
        1. 9.6.2.1 ChargerStatus 寄存器(I2C 地址 = 21/20h)[复位 = 0000h]
        2. 9.6.2.2 ProchotStatus 寄存器(I2C 地址 = 23/22h)[复位 = A800h]
      3. 9.6.3  ChargeCurrent 寄存器(I2C 地址 = 03/02h)[复位 = 0000h]
        1. 9.6.3.1 电池预充电电流钳位
      4. 9.6.4  MaxChargeVoltage 寄存器(I2C 地址 = 05/04h)[基于 CELL_BATPRESZ 引脚设置的复位值]
      5. 9.6.5  MinSystemVoltage 寄存器(I2C 地址 = 0D/0Ch)[基于 CELL_BATPRESZ 引脚设置复位值]
        1. 9.6.5.1 系统电压调节
      6. 9.6.6  用于动态电源管理的输入电流和输入电压寄存器
        1. 9.6.6.1 输入电流寄存器
          1. 9.6.6.1.1 具有 10mΩ 检测电阻的 IIN_HOST 寄存器(I2C 地址 = 0F/0Eh)[复位 = 4100h]
          2. 9.6.6.1.2 具有 10mΩ 检测电阻的 IIN_DPM 寄存器(I2C 地址 = 25/24h)[复位 = 4100h]
          3. 9.6.6.1.3 InputVoltage 寄存器(I2C 地址 = 0B/0Ah)[复位 = VBUS-1.28V]
      7. 9.6.7  OTGVoltage 寄存器(I2C 地址 = 07/06h)[复位 = 0000h]
      8. 9.6.8  OTGCurrent 寄存器(I2C 地址 = 09/08h)[复位 = 0000h]
      9. 9.6.9  ADCVBUS/PSYS 寄存器(I2C 地址 = 27/26h)
      10. 9.6.10 ADCIBAT 寄存器(I2C 地址 = 29/28h)
      11. 9.6.11 ADCIINCMPIN 寄存器(I2C 地址 = 2B/2Ah)
      12. 9.6.12 ADCVSYSVBAT 寄存器(I2C 地址 = 2D/2Ch)
      13. 9.6.13 ID 寄存器
        1. 9.6.13.1 ManufactureID 寄存器(I2C 地址 = 2Eh)[复位 = 0040h]
        2. 9.6.13.2 器件 ID (DeviceAddress) 寄存器(I2C 地址 = 2Fh)[复位 = 0h]
  11. 10应用和实施
    1. 10.1 应用信息
    2. 10.2 典型应用
      1. 10.2.1 设计要求
      2. 10.2.2 详细设计过程
        1. 10.2.2.1 ACP-ACN 输入滤波器
        2. 10.2.2.2 电感器选型
        3. 10.2.2.3 输入电容器
        4. 10.2.2.4 输出电容器
        5. 10.2.2.5 功率 MOSFET 选择
      3. 10.2.3 应用曲线
  12. 11电源相关建议
  13. 12布局
    1. 12.1 布局指南
    2. 12.2 布局示例
      1. 12.2.1 布局示例参考顶视图
      2. 12.2.2 内层布局和布线示例
  14. 13器件和文档支持
    1. 13.1 器件支持
      1. 13.1.1 第三方产品免责声明
    2. 13.2 文档支持
      1. 13.2.1 相关文档
    3. 13.3 接收文档更新通知
    4. 13.4 支持资源
    5. 13.5 商标
    6. 13.6 静电放电警告
    7. 13.7 术语表
  15. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

布局指南

对于防止电场和磁场辐射以及高频谐振问题,采用合适的元件布局来尽可能简化高频电流路径环路(参阅节 12.2)非常重要。以下是正确布局的 PCB 布局优先级列表。

表 12-1 PCB 布局指南
规则 元件 功能 影响 指南
1 PCB 层堆叠 热性能、效率、信号完整性 建议使用多层 PCB。至少分配一个接地层。BQ257XXEVM 使用 4 层 PCB(顶层、接地层、信号层和底层)。
2 CBUS、RAC、Q1、Q2 输入环路 高频噪声,纹波 VBUS 电容器、RAC、Q1 和 Q2 构成一个小环路 1。最好将它们放在同一侧。用大面积的铜连接它们以减少寄生电阻。将部分 CBUS 移到 PCB 的另一侧,以实现高密度设计。在 Q1 和 Q2 功率级之前的 RAC 之后,建议将 10nF + 1nF(0402 封装)去耦电容器尽可能靠近 IC 放置,以便对开关环路高频噪声进行去耦。
3 RAC、Q1、L1、Q4 电流路径 效率 从 VBUS 到 VSYS 通过 RAC、Q1、L1、Q4 的电流路径具有低阻抗。请留意过孔电阻是否不在同一侧。对于 1oz 铜厚度的 10mil 过孔,过孔数量可估算为 1A 至 2A/过孔。
4 CSYS、Q3、Q4 输出环路 高频噪声,纹波 VSYS 电容器 Q3 和 Q4 构成一个小环路 2。最好将它们放在同一侧。用大面积的铜连接它们以减少寄生电阻。将部分 CSYS 移到 PCB 的另一侧,以实现高密度设计。
5 QBAT、RSR 电流路径 效率、电池电压检测 将 QBAT 和 RSR 放置在电池端子附近。从 VBAT 到 VSYS 通过 RSR 和 QBAT 的电流路径具有低阻抗。请留意过孔电阻是否不在同一侧。该器件通过电池端子附近的 SRN 检测电池电压。
6 Q1、Q2、L1、Q3、Q4 功率级 热性能、效率 将 Q1、Q2、L1、Q3 和 Q4 彼此相邻放置。留出足够的铜面积来散热。建议铜面积为焊盘尺寸的 2 到 4 倍。多个散热过孔可用于将更多铜层连接在一起并散发更多热量。
7 RAC、RSR 电流检测 调节精度 对 RAC 和 RSR 电流检测电阻使用开尔文检测技术。将电流检测走线连接到焊盘的中心,并将电流检测走线用作差分对。
8 小电容 IC 旁路电容器 噪声、抖动、纹波 将 VBUS 电容、VCC 电容、REGN 电容靠近 IC 放置。
9 BST 电容器 HS 栅极驱动 高频噪声,纹波 将 HS MOSFET 升压自举电路电容器放置在靠近 IC 的位置并位于 PCB 板的同一侧。建议电容器 SW1/2 节点使用宽铜多边形连接到功率级,建议电容器 BST1/2 节点使用至少 8mil 的迹线连接到 IC BST1/2 引脚。
10 接地分区 测量精度、调节精度、抖动、纹波 优先选择单独的模拟接地 (AGND) 和电源接地 (PGND)。PGND 应用于所有功率级相关的接地网。AGND 应用于所有检测、补偿和控制网络接地,例如 ACP/ACN/COMP1/COMP2/CMPIN/CMPOUT/IADPT/IBAT/PSYS。将所有模拟接地端连接到专用的低阻抗覆铜平面,该覆铜平面连接到 IC 外露焊盘下方的电源接地端。如果可能,请使用专用的 COMP1、COMP2 AGND 布线。使用电源板作为单一接地连接点,将模拟接地和电源接地连接在一起。