ZHCUDA5A September   2025  – December 2025

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 主要系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
      1. 2.2.1 控制引导
        1. 2.2.1.1 信号
        2. 2.2.1.2 占空比
        3. 2.2.1.3 信号状态
        4. 2.2.1.4 控制引导信号电路
        5. 2.2.1.5 电动汽车仿真电路
      2. 2.2.2 HomePlug Green PHY - 电力线通信
        1. 2.2.2.1 HomePlug Green PHY 电路
      3. 2.2.3 接近引导
        1. 2.2.3.1 1 类和 NACS
        2. 2.2.3.2 2 类
        3. 2.2.3.3 接近检测电路
      4. 2.2.4 GB/T – ChaoJi
        1. 2.2.4.1 信号
        2. 2.2.4.2 GB/T
        3. 2.2.4.3 ChaoJi 标准
        4. 2.2.4.4 原理图
        5. 2.2.4.5 电动汽车仿真
      5. 2.2.5 CHAdeMO
        1. 2.2.5.1 信号
        2. 2.2.5.2 标准
        3. 2.2.5.3 原理图
          1. 2.2.5.3.1 高侧开关 (CS1)
          2. 2.2.5.3.2 低侧开关 (CS2)
          3. 2.2.5.3.3 接近检测
          4. 2.2.5.3.4 车辆充电授权
        4. 2.2.5.4 电动汽车仿真
      6. 2.2.6 插头锁定
        1. 2.2.6.1 信号
        2. 2.2.6.2 原理图
        3. 2.2.6.3 电机驱动器
        4. 2.2.6.4 电磁阀驱动器
      7. 2.2.7 温度检测
        1. 2.2.7.1 信号
        2. 2.2.7.2 原理图
        3. 2.2.7.3 计算
      8. 2.2.8 连接
        1. 2.2.8.1 RS-485
        2. 2.2.8.2 RS-232
        3. 2.2.8.3 CAN
      9. 2.2.9 通用输入/输出
        1. 2.2.9.1 数字输入
        2. 2.2.9.2 模拟输入
        3. 2.2.9.3 数字输出
    3. 2.3 重点产品
      1. 2.3.1 MSPM0G3507
      2. 2.3.2 AM62L
  9. 3硬件、软件、测试要求和测试结果
    1. 3.1 所需的硬件和软件
    2. 3.2 测试设置
      1. 3.2.1 电源选项
      2. 3.2.2 XDS110 调试探针
        1. 3.2.2.1 应用(或反向通道)UART
        2. 3.2.2.2 使用外部调试探针代替板载 XDS110
      3. 3.2.3 连接到 AM62L-EVM
      4. 3.2.4 连接器、引脚接头和跳线设置
    3. 3.3 测试结果
      1. 3.3.1 控制引导
        1. 3.3.1.1 TLV1805 输出上升和下降时间
        2. 3.3.1.2 不同状态下的控制引导信号电压精度
      2. 3.3.2 GB/T ChaoJi
        1. 3.3.2.1 GB/T 信号电压精度
        2. 3.3.2.2 不同状态下的 ChaoJi 信号电压精度
      3. 3.3.3 数字和模拟输入
        1. 3.3.3.1 数字输入
        2. 3.3.3.2 模拟输入
  10. 4设计和文档支持
    1. 4.1 设计文件
      1. 4.1.1 原理图
      2. 4.1.2 BOM
    2. 4.2 工具与软件
    3. 4.3 文档支持
    4. 4.4 支持资源
    5. 4.5 商标
  11. 5作者简介
  12. 6修订历史记录

应用(或反向通道)UART

反向通道 UART 可实现与 USB 主机进行通信(不属于目标应用的主要功能)。这在开发过程中非常实用,而且还能提供与 PC 主机侧进行通信的通道。

反向通道 UART 是 MSPM0 上的 UART1(PA8、PA9)上的 UART。在主机侧,当 TIDA-010939 在主机上进行枚举时,将生成一个用于应用反向通道 UART 的虚拟 COM 端口。可以使用任何与 COM 端口连接的 PC 应用程序(包括 Hyperterminal® 或 Docklight 等终端应用程序)来打开该端口并与目标应用程序通信。识别用于反向通道的 COM 端口。在 Microsoft® Windows® PC 上,使用设备管理器查找 COM 端口。

TIDA-010939 设备管理器中的应用反向通道 UART图 3-2 设备管理器中的应用反向通道 UART

反向通道 UART 为 XDS110 Class Application/User UART 端口。此时,图 3-2 展示了 COM14,但该端口可能因主机 PC 而异。确定了正确的 COM 端口后,请根据文档在主机应用中配置该端口。然后,用户可以打开该端口并开始与主机进行通信。

在目标 MSPM0G3507 侧,反向通道连接到 UART1 模块。XDS110 具有可配置的波特率;因此,PC 应用程序配置的波特率务必与在 UART1 上配置的波特率相同。