SFFSAY3 January   2026 F29H850TU , F29H859TU-Q1 , TMCS1123 , TMCS1123-Q1 , TPS650362-Q1 , TPS650365-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Background
    2. 1.2 HW/SW FuSa Analysis Process
      1. 1.2.1 Item Definition
      2. 1.2.2 Functional Safety Goal
      3. 1.2.3 Functional Safety Concept
      4. 1.2.4 Technical Safety Concept
      5. 1.2.5 HW/SW Safety Requirement
      6. 1.2.6 Dependent‑failure Analysis
    3. 1.3 TI Collaterals
      1. 1.3.1 TI Components Category
      2. 1.3.2 FuSa Collaterals for Safety MCU
  5. 2FuSa Concepts of OBC System
    1. 2.1 Item Definition
      1. 2.1.1 Item Functions
      2. 2.1.2 System Boundaries
      3. 2.1.3 External Interfaces
      4. 2.1.4 Operation Modes
    2. 2.2 Functional Safety Goal
    3. 2.3 Functional Safety Concept
    4. 2.4 Technical Safety Concept
    5. 2.5 HW/SW Safety Requirement
    6. 2.6 Dependent‑Failure Analysis
  6. 3FuSa Components of OBC System
    1. 3.1 Components Overview
    2. 3.2 Microcontroller
      1. 3.2.1 CPU
      2. 3.2.2 ADC Sample
      3. 3.2.3 PWM Generation
      4. 3.2.4 CMPSS
      5. 3.2.5 Data Transmission
      6. 3.2.6 Fault Signal Monitor and Safe State Control
    3. 3.3 Power Management IC
      1. 3.3.1 MCU Monitor
      2. 3.3.2 Shutdown Sequence
      3. 3.3.3 Power Supply
    4. 3.4 System Basis Chips
      1. 3.4.1 CAN Communication
      2. 3.4.2 Supply Voltage Rail Monitoring
      3. 3.4.3 SPI/Processor Communication
      4. 3.4.4 Device Internal EEPROM
    5. 3.5 Power Supply and Supervisor
    6. 3.6 Gate Driver
    7. 3.7 Voltage Sensor
    8. 3.8 Current Sensor
    9. 3.9 Temperature Sensor
  7. 4Summary
  8. 5References

CMPSS

CMPSS consists of analog comparators and supporting components that are combined into a topology that is useful for power applications such as peak-current mode control, switched- mode power, power factor correction, and voltage trip monitoring. With ePWM for active synchronous rectification, active synchronous rectification enables higher efficiency.

  • Hardware Redundancy. For CMPSS, hardware redundancy can be implemented by having multichannel parallel outputs or input comparison.
  • Software Test of Function Including Error Tests. Support running functionality test or fault injection test on the CMPSS critical registers or critical features. A set of predetermined patterns can be written to the registers, after that the user read back the register value and compared with expected value. Through adjusting the filter thresholds, check whether the output is followed with the filer changes to achieve the key CMPSS function detection.
  • Logic Power on Self-Test. LPOST (Logic Power on Self-Test) provides high diagnostic coverage for the device at a transistor level during start-up and application time. LPOST utilizes Design for Test (DFT) structures inserted into the device for rapid execution of high-quality manufacturing tests, but with an internal test engine rather than external automated test equipment (ATE). The LPOST test is triggered by the BootROM based on the SECCFG user input.