SBVA100 December   2022 LP2992 , TPS786 , TPS7A30 , TPS7A3001-EP , TPS7A33 , TPS7A39 , TPS7A4501-SP , TPS7A47 , TPS7A47-Q1 , TPS7A4701-EP , TPS7A49 , TPS7A52 , TPS7A52-Q1 , TPS7A53 , TPS7A53-Q1 , TPS7A53A-Q1 , TPS7A53B , TPS7A54 , TPS7A54-Q1 , TPS7A57 , TPS7A7100 , TPS7A7200 , TPS7A7300 , TPS7A80 , TPS7A8300 , TPS7A83A , TPS7A84 , TPS7A84A , TPS7A85 , TPS7A85A , TPS7A87 , TPS7A89 , TPS7A90 , TPS7A91 , TPS7A92 , TPS7A94 , TPS7A96 , TPS7B7702-Q1 , TPS7H1111-SEP , TPS7H1111-SP , TPS7H1210-SEP

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2System Architecture Design – How Many Parallel LDO's are Required?
    1. 2.1 Noise
    2. 2.2 PSRR
    3. 2.3 Specifications That Limit the Maximum LDO Current
      1. 2.3.1 Dropout (or Available Headroom Voltage)
      2. 2.3.2 Temperature
    4. 2.4 Load Current (ILOAD) and Load Voltage (VLOAD)
  5. 3System VLOAD and Current Sharing Simulation of Parallel LDOs using Ballast Resistors
  6. 4Examples
    1. 4.1 TPS7A94
    2. 4.2 TPS7A47xx
    3. 4.3 TPS7A57
  7. 5References

Dropout (or Available Headroom Voltage)

An LDO requires a minimum amount of headroom voltage to properly regulate VOUT and still provide the desired load current, however this headroom voltage is not always available. By paralleling LDO's we can spread the load across multiple LDO's and thus we can operate with less headroom. If we assume that the data sheets dropout vs IOUT curve is linear, we can approximate the maximum current an LDO can provide to the load without entering dropout. The maximum current an LDO can provide is either Equation 3 or the full rated current ILDO_MAX listed in the data sheet.

Equation 3. ILDO_MAX_DROPOUT_LIM=VDROPVIN-VOUTILDO_MAX