SLUSFW8 March   2025 UCC27624V

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Operating Supply Current
      2. 6.3.2 Input Stage
      3. 6.3.3 Enable Function
      4. 6.3.4 Output Stage
      5. 6.3.5 Low Propagation Delays and Tightly Matched Outputs
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 VDD and Undervoltage Lockout
        2. 7.2.2.2 Drive Current and Power Dissipation
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Third-Party Products Disclaimer
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|8
  • DGN|8
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The UCC27624V device represents TI's latest generation of dual-channel, low-side, high-speed, gate driver devices featuring 5A source and sink current capability, fast switching characteristics, and a host of other features. UCC27624V Features and Benefits details the advantages of the gate driver's features, which combine to ensure efficient, robust, and reliable operation in high-frequency switching power circuits. The robust inputs of UCC27624V can handle –10V, ensuring reliable operation in noisy environments. The driver has good transient handling capability on its output due to its reverse current handling, as well as rail-to-rail output drive, and a small propagation delay (typically 17ns). With this built-in robustness, the UCC27624V device can also be directly connected to a gate drive transformer.

The input threshold of UCC27624V is compatible with TTL low-voltage logic, which is fixed and independent of VDD supply voltage. The driver can also work with CMOS-based controllers as long as the threshold requirement is met. The 1V typical hysteresis offers excellent noise immunity.

Each channel has an enable pin, ENx, with a fixed TTL compatible threshold. The ENx pins are internally pulled up. Pulling ENx low disables the corresponding channel, while leaving ENx open provides normal operation. The ENx pins can be used as an additional input with the same performance as the INx pins.

Table 6-1 UCC27624V Features and Benefits
FEATUREBENEFIT
–10V IN and EN capabilityEnhanced signal reliability and device robustness in noisy environments that experience ground bounce on the gate driver
17ns (typical) propagation delayExtremely low-pulse transmission distortion
1ns (typical) delay matching between channelsEase of paralleling outputs for higher (two times) current capability. This helps when driving parallel-power switches.
Expanded VDD operating range of 9.5V to 26VFlexibility in system design. Covers a wide range of power switches
Expanded operating temperature range of –40°C to +150°CFlexibility in system design. System robustness improvement
VDD UVLO protectionOutputs are held low in UVLO condition, which ensures predictable, glitch-free operation at power-up and power-down.
Outputs are held low when input pins (INx) are in floating condition.Protection feature, especially useful in passing abnormal condition tests during safety certification
Outputs are enabled when enable pins (ENx) are in floating condition.Pin-to-pin compatibility with legacy devices from Texas Instruments in designs where Pin 1 and Pin 8 are "No Connect" pins
Input and enable threshold with wide hysteresisEnhanced noise immunity while retaining compatibility with microcontroller logic-level input signals (3.3V, 5V) optimized for digital power
Inputs independent of VDDSystem simplification, especially related to auxiliary bias supply architecture