ZHCSQ51 November   2023 MCF8329A

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级 - 通信
    3. 6.3 建议运行条件
    4. 6.4 热性能信息 1pkg
    5. 6.5 电气特性
    6. 6.6 标准和快速模式下 SDA 和 SCL 总线的特征
    7. 6.7 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  三相 BLDC 栅极驱动器
      2. 7.3.2  栅极驱动架构
        1. 7.3.2.1 死区时间和跨导预防
      3. 7.3.3  AVDD 线性稳压器
      4. 7.3.4  DVDD 稳压器
        1. 7.3.4.1 AVDD 供电的 VREG
        2. 7.3.4.2 用于 VREG 的外部电源
        3. 7.3.4.3 用于 VREG 电源的外部 MOSFET
      5. 7.3.5  低侧电流检测放大器
      6. 7.3.6  器件接口模式
        1. 7.3.6.1 接口 - 控制和监控
        2. 7.3.6.2 I2C 接口
      7. 7.3.7  电机控制输入选项
        1. 7.3.7.1 模拟模式电机控制
        2. 7.3.7.2 PWM 模式电机控制
        3. 7.3.7.3 频率模式电机控制
        4. 7.3.7.4 基于 I2C 的电机控制
        5. 7.3.7.5 输入控制基准曲线
          1. 7.3.7.5.1 线性控制曲线
          2. 7.3.7.5.2 阶梯控制曲线
          3. 7.3.7.5.3 正向/反向曲线
        6. 7.3.7.6 在不使用分析器的情况下控制输入传递函数
      8. 7.3.8  自举电容器初始充电
      9. 7.3.9  在不同初始条件下启动电机
        1. 7.3.9.1 案例 1 – 电机静止
        2. 7.3.9.2 案例 2 – 电机正向旋转
        3. 7.3.9.3 案例 3 – 电机反向旋转
      10. 7.3.10 电机启动顺序 (MSS)
        1. 7.3.10.1 初始速度检测 (ISD)
        2. 7.3.10.2 电机重新同步
        3. 7.3.10.3 反向驱动
          1. 7.3.10.3.1 反向驱动调谐
        4. 7.3.10.4 电机启动
          1. 7.3.10.4.1 对齐
          2. 7.3.10.4.2 双对齐
          3. 7.3.10.4.3 初始位置检测 (IPD)
            1. 7.3.10.4.3.1 IPD 操作
            2. 7.3.10.4.3.2 IPD 释放
            3. 7.3.10.4.3.3 IPD 超前角度
          4. 7.3.10.4.4 显示首个周期启动
          5. 7.3.10.4.5 开环
          6. 7.3.10.4.6 从开环转换到闭环
      11. 7.3.11 闭环运行
        1. 7.3.11.1 闭环加速
        2. 7.3.11.2 速度 PI 控制
        3. 7.3.11.3 电流 PI 控制
        4. 7.3.11.4 电源环路
        5. 7.3.11.5 调制指数控制
      12. 7.3.12 每安培最大扭矩 (MTPA) 控制
      13. 7.3.13 弱磁控制
      14. 7.3.14 电机参数
        1. 7.3.14.1 电机电阻
        2. 7.3.14.2 电机电感
        3. 7.3.14.3 电机反电动势常数
      15. 7.3.15 电机参数提取工具 (MPET)
      16. 7.3.16 防电压浪涌 (AVS)
      17. 7.3.17 输出 PWM 开关频率
      18. 7.3.18 主动制动
      19. 7.3.19 死区时间补偿
      20. 7.3.20 电压检测调节
      21. 7.3.21 电机停止运转选项
        1. 7.3.21.1 滑行(高阻态)模式
        2. 7.3.21.2 再循环模式
        3. 7.3.21.3 低侧制动
        4. 7.3.21.4 主动降速
      22. 7.3.22 FG 配置
        1. 7.3.22.1 FG 输出频率
        2. 7.3.22.2 开环中的 FG
        3. 7.3.22.3 电机停止期间的 FG
        4. 7.3.22.4 故障期间的 FG 行为
      23. 7.3.23 直流总线电流限值
      24. 7.3.24 保护功能
        1. 7.3.24.1  PVDD 电源欠压锁定 (PVDD_UV)
        2. 7.3.24.2  AVDD 上电复位 (AVDD_POR)
        3. 7.3.24.3  GVDD 欠压锁定 (GVDD_UV)
        4. 7.3.24.4  BST 欠压锁定 (BST_UV)
        5. 7.3.24.5  MOSFET VDS 过流保护 (VDS_OCP)
        6. 7.3.24.6  VSENSE 过流保护 (SEN_OCP)
        7. 7.3.24.7  热关断 (OTSD)
        8. 7.3.24.8  硬件锁定检测电流限制 (HW_LOCK_ILIMIT)
          1. 7.3.24.8.1 HW_LOCK_ILIMIT 锁存关断 (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.24.8.2 HW_LOCK_ILIMIT 自动恢复 (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.24.8.3 HW_LOCK_ILIMIT 仅报告 (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.24.8.4 HW_LOCK_ILIMIT 已禁用 (HW_LOCK_ILIMIT_MODE = 1001b-1111b)
        9. 7.3.24.9  锁定检测电流限制 (LOCK_ILIMIT)
          1. 7.3.24.9.1 LOCK_ILIMIT 锁存关断 (LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.24.9.2 LOCK_ILIMIT 自动恢复 (LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.24.9.3 LOCK_ILIMIT 仅报告 (LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.24.9.4 LOCK_ILIMIT 已禁用 (LOCK_ILIMIT_MODE = 1xx1b)
        10. 7.3.24.10 电机锁定 (MTR_LCK)
          1. 7.3.24.10.1 MTR_LCK 锁存关断 (MTR_LCK_MODE = 00xxb)
          2. 7.3.24.10.2 MTR_LCK 自动恢复 (MTR_LCK_MODE= 01xxb)
          3. 7.3.24.10.3 MTR_LCK 仅报告 (MTR_LCK_MODE = 1000b)
          4. 7.3.24.10.4 MTR_LCK 已禁用 (MTR_LCK_MODE = 1xx1b)
        11. 7.3.24.11 电机锁定检测
          1. 7.3.24.11.1 锁定 1:异常速度 (ABN_SPEED)
          2. 7.3.24.11.2 锁定 2:异常 BEMF (ABN_BEMF)
          3. 7.3.24.11.3 锁定 3:无电机故障 (NO_MTR)
        12. 7.3.24.12 MPET 故障
        13. 7.3.24.13 IPD 故障
    4. 7.4 器件功能模式
      1. 7.4.1 功能模式
        1. 7.4.1.1 睡眠模式
        2. 7.4.1.2 待机模式
        3. 7.4.1.3 故障复位 (CLR_FLT)
    5. 7.5 外部接口
      1. 7.5.1 DRVOFF - 栅极驱动器关断功能
      2. 7.5.2 DAC 输出
      3. 7.5.3 电流检测放大器输出
      4. 7.5.4 振荡源
        1. 7.5.4.1 外部时钟源
    6. 7.6 EEPROM 访问和 I2C 接口
      1. 7.6.1 EEPROM 访问
        1. 7.6.1.1 EEPROM 写入
        2. 7.6.1.2 EEPROM 读取
      2. 7.6.2 I2C 串行接口
        1. 7.6.2.1 I2C 数据字
        2. 7.6.2.2 I2C 写入操作
        3. 7.6.2.3 I2C 读取操作
        4. 7.6.2.4 I2C 通信协议数据包示例
        5. 7.6.2.5 内部缓冲区
        6. 7.6.2.6 CRC 字节计算
    7. 7.7 EEPROM(非易失性)寄存器映射
      1. 7.7.1 算法配置寄存器
      2. 7.7.2 Internal_Algorithm_Configuration 寄存器
      3. 7.7.3 Hardware_Configuration 寄存器
      4. 7.7.4 Fault_Configuration 寄存器
    8. 7.8 RAM(易失性)寄存器映射
      1. 7.8.1 Fault_Status 寄存器
      2. 7.8.2 算法控制寄存器
      3. 7.8.3 System_Status 寄存器
      4. 7.8.4 器件控制寄存器
      5. 7.8.5 算法变量寄存器
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1.      详细设计过程
      2.      自举电容器和 GVDD 电容器选型
      3. 8.2.1 VREG 电源的外部 MOSFET 选择
      4.      栅极驱动电流
      5.      栅极电阻器选型
      6.      大功率设计中的系统注意事项
      7.      电容器电压等级
      8.      外部功率级元件
      9. 8.2.2 应用曲线
        1. 8.2.2.1 电机启动
        2.       高速 (1.8kHz) 运行
        3.       主动制动以更快减速
        4. 8.2.2.2 死区时间补偿
  10. 电源相关建议
    1. 9.1 大容量电容
  11. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
    3. 10.3 散热注意事项
      1. 10.3.1 功率损耗
  12. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 支持资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 术语表
  13. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

栅极电阻器选型

SHx 连接的压摆率将取决于外部 MOSFET 栅极的控制速率。MCF8329A 的上拉/下拉强度在内部是固定的,因此可以通过外部串联栅极电阻器来控制栅极电压的压摆率。在部分应用中,MOSFET 的栅极电荷(即栅极驱动器器件上的负载)明显大于栅极驱动器峰值输出电流能力。在此类应用中,外部栅极电阻器可以限制栅极驱动器的峰值输出电流。外部栅极电阻器还用于抑制振铃和噪声。

MOSFET 的特定参数、系统电压和电路板寄生效应都会影响最终的 SHx 压摆率,因此选择外部栅极电阻器的最佳阻值或配置通常是一个迭代过程。

为了降低栅极驱动电流,串联电阻器 RGATE 可以放置在栅极驱动输出上,以控制拉电流和灌电流路径的电流。单个栅极电阻器将为栅极拉电流和灌电流提供相同的栅极路径,因此较大的 RGATE 值将产生类似的 SHx 压摆率。请注意,栅极驱动电流因器件的 PVDD 电压、结温和工艺变化而异。

GUID-20221222-SS0I-RDS3-MPHV-NRZKGBHZ7XBZ-low.svg图 8-2 具有串联电阻器的栅极驱动器输出
GUID-20221222-SS0I-RHQB-M65M-T3VH1BZPHCNS-low.svg图 8-3 具有独立拉电流路径和灌电流路径的栅极驱动器输出

通常,建议灌电流是拉电流的两倍,以实现从栅极到源极的强下拉,从而确保 MOSFET 在相反的 FET 开关时保持关断。通过将一个二极管和一个灌电流电阻器 (RSINK) 与拉电流电阻器 (RSOURCE) 并联放置,使用一个电阻器为拉电流和灌电流提供单独的路径,能够以分立方式实现这一点。使用阻值相同的拉电流电阻器和灌电流电阻器会使灌电流路径的等效电阻减半。这样产生的栅极驱动灌电流是拉电流的两倍,并且在关断 MOSFET 时 SHx 的压摆率将提高一倍。