SLLSFT3 November   2025 MC121-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Requirements
    7. 5.7 Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Motor Control
        1. 6.3.1.1 Duty Input
        2. 6.3.1.2 Duty Curve
        3. 6.3.1.3 Motor Start, Speed Change, and Stop
        4. 6.3.1.4 Open-Loop (Duty Cycle) Control
        5. 6.3.1.5 Closed-Loop (Speed) Control
        6. 6.3.1.6 Commutation
          1. 6.3.1.6.1 Hall Sensor
            1. 6.3.1.6.1.1 Field Direction Definition
            2. 6.3.1.6.1.2 Internal Hall Latch Sensor Output
          2. 6.3.1.6.2 Hall Offset
          3. 6.3.1.6.3 Square Commutation
          4. 6.3.1.6.4 Soft Commutation
        7. 6.3.1.7 PWM Modulation Modes
      2. 6.3.2 Protections
        1. 6.3.2.1 Locked Rotor Protection
        2. 6.3.2.2 Current Limit
        3. 6.3.2.3 Overcurrent Protection (OCP)
        4. 6.3.2.4 VM Undervoltage Lockout (UVLO)
        5. 6.3.2.5 VM Over Voltage Protection (OVP)
        6. 6.3.2.6 Thermal Shutdown (TSD)
        7. 6.3.2.7 Integrated Supply (VM) Clamp
    4. 6.4 Device Functional Modes
      1. 6.4.1 Active Mode
      2. 6.4.2 Sleep and Standby Mode
      3. 6.4.3 Fault Mode
      4. 6.4.4 Test Mode and One-Time Programmable Memory
    5. 6.5 Programming
      1. 6.5.1 I2C Communication
        1. 6.5.1.1 I2C Read
        2. 6.5.1.2 I2C Write
  8. Register Map
    1. 7.1 USR_OTP Registers
    2. 7.2 USR_TM Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 External Components
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Bulk Capacitance
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History

封装选项

机械数据 (封装 | 引脚)
  • DYM|6
  • DEZ|6
散热焊盘机械数据 (封装 | 引脚)
订购信息

Duty Curve

MC121-Q1 supports configurable duty curve as shown in Figure 6-3. This allows user to set the target output duty cycle (DOUT_TARGET) as a function of input duty (DIN) depending on the specific use-case enabling a single platform (MC121-Q1) BLDC driver designs for different end applications.

MC121-Q1 Duty Curve Figure 6-3 Duty Curve

The configurable points on the duty curve are as follows,

  • DIN0, DOUT0: DIN0 can be used to set the minimum input (starting) duty cycle to start driving the motor - when STBY_EN = 0x1, motor is not driven till DIN ≥ (DIN0 + DINHYS). DINHYS sets the hysteresis around DIN0 to start/stop driving the motor. MC121-Q1 also provides the option of driving the motor even when DIN < DIN0 by setting STBY_EN to 0x0 and DOUT0 to a non-zero value. The device state when DIN = 0% is set by SLEEP_EN and STBY_EN bits as listed in Table 6-5.
  • DINOFF: DINOFF sets the maximum input duty cycle (DIN) above which target output duty cycle (DOUT_TARGET) is set to zero to stop driving the motor, DOUT_TARGET = 0% when DIN ≥ DINOFF. The motor driving resumes when DIN < (DINOFF - DINHYS).
  • DOUT_MIN: DOUT_MIN sets the minimum target output duty cycle (DOUT_TARGET) when DIN0 < DIN < DINOFF.
  • DOUT_MAX: DOUT_MAX sets the maximum target output duty cycle (DOUT_TARGET) when DIN < DINOFF.
  • DOUTx: DOUTx sets the output duty at fixed intervals of input duty. DOUT1 sets the target output duty at DIN = 12.5%, DOUT2 sets the target output duty at DIN = 25% and so forth such that DOUT8 sets the target output duty at DIN = 100% . DOUTx can be used to configure positive slope duty curve as shown in Duty Curve. DOUTx can be also used to configure negative slope as shown in Figure 6-4. DOUTx can also be used to configure mixed slope (positive, negative and zero) as shown in Figure 6-5.

MC121-Q1 Duty Curve - Negative
                        SlopeFigure 6-4 Duty Curve - Negative Slope
MC121-Q1 Duty Curve - Mixed
                        SlopeFigure 6-5 Duty Curve - Mixed Slope