ZHCSLD7C June   2020  – February 2021 LMX2820

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 引脚配置和功能
  6. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序要求
    7. 6.7 典型特性
  7. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  基准振荡器输入
      2. 7.3.2  输入路径
        1. 7.3.2.1 输入路径倍频器 (OSC_2X)
        2. 7.3.2.2 R 预分频器 (PLL_R_PRE)
        3. 7.3.2.3 可编程输入乘法器 (MULT)
        4. 7.3.2.4 R 分频器 (PLL_R)
      3. 7.3.3  PLL 相位检测器和电荷泵
      4. 7.3.4  N 分频器和分数分频电路
        1. 7.3.4.1 整数 N 分频部分 (PLL_N)
        2. 7.3.4.2 分数 N 分频部分(PLL_NUM 和 PLL_DEN)
        3. 7.3.4.3 调制器阶数 (MASH_ORDER)
      5. 7.3.5  LD 引脚锁定检测
      6. 7.3.6  MUXOUT 引脚和读回
      7. 7.3.7  内部 VCO
        1. 7.3.7.1 VCO 校准
          1. 7.3.7.1.1 确定 VCO 增益和范围
      8. 7.3.8  通道分频器
      9. 7.3.9  输出频率倍频器
      10. 7.3.10 输出缓冲器
      11. 7.3.11 断电模式
      12. 7.3.12 针对多个器件的相位同步功能
        1. 7.3.12.1 SYNC 类别
        2. 7.3.12.2 相位调整
          1. 7.3.12.2.1 使用 MASH_SEED 创建相移
          2. 7.3.12.2.2 静态与动态相位调整
          3. 7.3.12.2.3 相位调节的精细调整功能
      13. 7.3.13 SYSREF
      14. 7.3.14 快速 VCO 校准
      15. 7.3.15 双缓冲(影子寄存器)
      16. 7.3.16 输出静音引脚和乒乓方法
    4. 7.4 器件功能模式
      1. 7.4.1 外部 VCO 模式
      2. 7.4.2 外部反馈输入引脚
        1. 7.4.2.1 PFDIN 外部反馈模式
        2. 7.4.2.2 RFIN 外部反馈模式
  8. 应用和实现
    1. 8.1 应用信息
      1. 8.1.1 处理未使用的引脚
      2. 8.1.2 外部环路滤波器
      3. 8.1.3 使用即时校准
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
      3. 8.2.3 应用曲线
    3. 8.3 初始化和加电时序
  9. 电源相关建议
  10. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
  11. 11器件和文档支持
    1. 11.1 接收文档更新通知
    2. 11.2 支持资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
相位调节的精细调整功能

相位同步是指在每个上电周期和每次都假设遵循给定编程过程的情况下获得相同相位关系的过程。但是,在输出频率较高、周期较短的情况下,可能需要进行一些调整才能获得更准确的结果。至于相位同步的一致性,唯一的变化来源可能是如果 VCO 校准选择了不同的 VCO 内核和电容器,这可能会引入双峰分布,大约有 10ps 的变化。如果这 10ps 是不可取的,那么可以通过使用基于即时校准的 VCO 校准或完全辅助 VCO 校准来消除它。

通过器件的延迟因器件而异,可能约为 60ps。这种部件间的差异可以使用 MASH_SEED 来校准。通过器件的延迟变化也在 +2.5ps/°C 的范围内变化,但同一电路板上的器件可能具有相似的温度,因此这会有所出入。总之,可以使不同器件具有一致的延迟,并且可以通过 MASH_SEED 调整全部残留错误。当周期较短时,这往往仅会在输出频率较高时才会出现问题。