ZHCSJ44D December   2018  – April 2022 INA819

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Setting the Gain
        1. 8.3.1.1 Gain Drift
      2. 8.3.2 EMI Rejection
      3. 8.3.3 Input Common-Mode Range
      4. 8.3.4 Input Protection
      5. 8.3.5 Operating Voltage
      6. 8.3.6 Error Sources
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Reference Pin
      2. 9.1.2 Input Bias Current Return Path
    2. 9.2 Typical Applications
      1. 9.2.1 Three-Pin Programmable Logic Controller (PLC)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Resistance Temperature Detector Interface
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 PSpice® for TI
        2. 12.1.1.2 TINA-TI™ Simulation Software (Free Download)
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 接收文档更新通知
    4. 12.4 支持资源
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Detailed Design Procedure

There are two modes of operation for the circuit shown in Figure 9-5: current input and voltage input. This design requires R1 >> R2 >> R3. Given this relationship, Equation 3 calculates the current input mode transfer function.

Equation 3. GUID-264309FC-0F25-48AA-9583-141911B31C68-low.gif

where

  • G represents the gain of the instrumentation amplifier.
  • VD represents the differential voltage at the INA819 inputs.
  • VREF is the voltage at the INA819 REF pin.
  • IIN is the input current.

Equation 4 shows the transfer function for the voltage input mode.

Equation 4. GUID-1C6D3F2E-6A11-4D41-BA57-0C470B296C9E-low.gif

where

  • VIN is the input voltage.

R1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. The R1 value is 100 kΩ because increasing the R1 value also increases noise. The value of R3 must be extremely small compared to R1 and R2. 20 Ω for R3 is selected because that resistance value is much smaller than R1 and yields an input voltage of ±400 mV when operated in current mode (±20 mA).

Use Equation 5 to calculate R2 given VD = ±400 mV, VIN = ±10 V, and R1 = 100 kΩ.

Equation 5. GUID-9E0C1AE3-0CFD-4D04-98D0-5938EF6B5420-low.gif

The value obtained from Equation 5 is not a standard 0.1% value, so 4.17 kΩ is selected. R1 and R2 also use 0.1% tolerance resistors to minimize error.

Use Equation 6 to calculate the ideal gain of the instrumentation amplifier.

Equation 6. GUID-03735379-B2AC-4108-AC97-AA60CA44284A-low.gif

Equation 7 calculates the gain-setting resistor value using the INA819 gain equation (Equation 1).

Equation 7. GUID-D7291CE1-DB48-471F-A973-FCB08EBE4B85-low.gif

Use a standard 0.1% resistor value of 10.5 kΩ for this design.