ZHCSI19F April   2010  – April 2018 DLPC200

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
    2.     Power and Ground Pins
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Handling Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  I/O Electrical Characteristics
    6. 6.6  Video Input Pixel Interface Timing Requirements
    7. 6.7  I2C Interface Timing Requirements
    8. 6.8  USB Read Interface Timing Requirements
    9. 6.9  USB Write Interface Timing Requirements
    10. 6.10 SPI Slave Interface Timing Requirements
    11. 6.11 Parallel Flash Interface Timing Requirements
    12. 6.12 Serial Flash Interface Timing Requirements
    13. 6.13 Static RAM Interface Timing Requirements
    14. 6.14 DMD Interface Timing Requirements
    15. 6.15 DLPA200 Interface Timing Requirements
    16. 6.16 DDR2 SDR Memory Interface Timing Requirements
    17. 6.17 Video Input Pixel Interface – Image Sync and Blanking Requirements
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Frame Rates
    4. 7.4 Device Functional Modes
      1. 7.4.1 Video Modes
      2. 7.4.2 Structured Light Modes
        1. 7.4.2.1 Static Image Buffer Mode
        2. 7.4.2.2 Real Time Structured Light Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 DLPC200 System Interfaces
          1. 8.2.2.1.1  DLPC200 Master, I2C Interface for EDID Programming
          2. 8.2.2.1.2  USB Interface
          3. 8.2.2.1.3  Bus Protocol
          4. 8.2.2.1.4  SPI Slave Interface
          5. 8.2.2.1.5  Parallel Flash Memory Interface
          6. 8.2.2.1.6  Serial Flash Memory Interface
          7. 8.2.2.1.7  SRAM Interface
          8. 8.2.2.1.8  DDR2 SDR Memory Interface
          9. 8.2.2.1.9  Projector Image and Control Port Signals
          10. 8.2.2.1.10 SDRAM Memory
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Power-Up Requirements
    2. 9.2 Power-Down Requirements
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Impedance Requirements
      2. 10.1.2 PCB Signal Routing
      3. 10.1.3 Fiducials
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Heat Sink
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 器件标记
    2. 11.2 文档支持
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

SPI Slave Interface

The DLPC200 controller SPI interface consists of a 5-MHz input.

The SPI bus specifies five logic signals.

  • SLAVE_SPI_CLK – Serial clock (output from master)
  • SLAVE_SPI_MOSI – Master output, slave input (output from master)
  • SLAVE_SPI_MISO – Master input, slave output (output from slave, does not tristate)
  • SLAVE_SPI_CS – Slave select (active low; output from master)
  • SLAVE_SPI_ACK – Holdoff signal to indicate that the slave is processing commands and cannot accept new input (output from slave)

The master pulls the slave-select low. During each SPI clock cycle, a full-duplex data transmission occurs:

  • The master sends a bit on the MOSI line; the slave reads it from that same line.
  • The slave sends a bit on the MISO line; the master reads it from that same line.

Transmissions involve two shift registers, one in the master and one in the slave; they are connected in a ring. Data is shifted out with the most significant bit first, while shifting a new least significant bit into the same register.

After that register has been shifted out, the master and slave have exchanged register values. If there is more data to exchange, the shift registers are loaded with new data and the process repeats. Transmissions may involve any number of clock cycles.

When there is no more data to be transmitted, the master stops toggling its clock. Transmissions consist of packet commands/responses similar to the protocol defined for the USB interface. The SPI slave supports variable-length command and response packets, and a master can initiate multiple such transmissions as needed.

NOTE

The SLAVE_SPI_MOSI signal dose not tristate. To use the controller's slave SPI interface in a multi-slave SPI bus an external tristate buffer, like SN74LVC1G, must be used on the SLAVE_SPI_MOSI signal.