ZHCSNU2 September   2024 BQ25773

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序要求
    7. 6.7 典型特性 - BQ2577X
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  上电序列
      2. 7.3.2  MODE 引脚检测
      3. 7.3.3  REGN 稳压器 (REGN LDO)
      4. 7.3.4  独立比较器功能
      5. 7.3.5  电池充电管理
        1. 7.3.5.1 自主充电周期
        2. 7.3.5.2 电池充电曲线
        3. 7.3.5.3 充电终止
        4. 7.3.5.4 充电安全计时器
      6. 7.3.6  温度调节 (TREG)
      7. 7.3.7  仅电池模式下的 Vmin 主动保护 (VAP)
      8. 7.3.8  两级电池放电电流限制
      9. 7.3.9  快速角色交换功能
      10. 7.3.10 CHRG_OK 指示器
      11. 7.3.11 输入电流和充电电流检测
      12. 7.3.12 输入电流和电压限制设置
      13. 7.3.13 电池电芯配置
      14. 7.3.14 器件高阻态状态
      15. 7.3.15 USB On-The-Go (OTG)
      16. 7.3.16 准双相位转换器运行模式
      17. 7.3.17 连续导通模式 (CCM)
      18. 7.3.18 脉冲频率调制 (PFM)
      19. 7.3.19 开关频率和抖动功能
      20. 7.3.20 电流和功率监控器
        1. 7.3.20.1 高精度电流检测放大器(IADPT 和 IBAT)
        2. 7.3.20.2 高精度功率检测放大器 (PSYS)
      21. 7.3.21 输入源动态电源管理
      22. 7.3.22 用于监测的集成 16 位 ADC
      23. 7.3.23 输入电流优化器 (ICO)
      24. 7.3.24 两级适配器电流限制(峰值功率模式)
      25. 7.3.25 处理器热量指示
        1. 7.3.25.1 低功耗模式期间的 PROCHOT
        2. 7.3.25.2 PROCHOT 状态
      26. 7.3.26 器件保护
        1. 7.3.26.1  看门狗计时器 (WD)
        2. 7.3.26.2  输入过压保护 (ACOV)
        3. 7.3.26.3  输入过流保护 (ACOC)
        4. 7.3.26.4  系统过压保护 (SYSOVP)
        5. 7.3.26.5  电池过压保护 (BATOVP)
        6. 7.3.26.6  电池充电过流保护 (BATCOC)
        7. 7.3.26.7  电池放电过流保护 (BATDOC)
        8. 7.3.26.8  LDO 调节模式下的 BATFET 充电电流钳位保护
        9. 7.3.26.9  VBUS 和 ACP_A 之间的睡眠比较器保护 (SC_VBUSACP)
        10. 7.3.26.10 高占空比降压模式退出比较器保护 (HDBCP)
        11. 7.3.26.11 REGN 电源正常保护 (REGN_PG)
        12. 7.3.26.12 系统欠压锁定 (VSYS_UVP) 和断续模式
        13. 7.3.26.13 OTG 模式过压保护 (OTG_OVP)
        14. 7.3.26.14 OTG 模式欠压保护 (OTG_UVP)
        15. 7.3.26.15 热关断 (TSHUT)
    4. 7.4 器件功能模式
      1. 7.4.1 正向模式
        1. 7.4.1.1 采用窄 VDC 架构的系统电压调节
        2. 7.4.1.2 电池充电
      2. 7.4.2 USB On-The-Go 模式
      3. 7.4.3 直通模式 (PTM) 专利技术
      4. 7.4.4 学习模式
    5. 7.5 编程
      1. 7.5.1 I2C 串行接口
        1. 7.5.1.1 时序图
        2. 7.5.1.2 数据有效性
        3. 7.5.1.3 启动条件和停止条件
        4. 7.5.1.4 字节格式
        5. 7.5.1.5 确认 (ACK) 和否定确认 (NACK)
        6. 7.5.1.6 目标地址和数据方向位
        7. 7.5.1.7 单独读取和写入
        8. 7.5.1.8 多重读取和多重写入
        9. 7.5.1.9 写入 2 字节 I2C 命令
    6. 7.6 BQ25773 寄存器
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1 用于电压尖峰阻尼的输入缓冲器和滤波器
        2. 8.2.2.2 ACP-ACN 输入滤波器
        3. 8.2.2.3 电感器选型
        4. 8.2.2.4 输入电容器
        5. 8.2.2.5 输出电容器
        6. 8.2.2.6 功率 MOSFET 选择
  10. 电源相关建议
  11. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
      1. 10.2.1 布局示例参考顶视图
  12. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方产品免责声明
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 术语表
  13. 12修订历史记录
  14. 13机械、封装和可订购信息

LDO 调节模式下的 BATFET 充电电流钳位保护

当启用充电器 LDO 模式 (EN_LDO=1b) 且在充电期间 VBAT 电压下降到低于 VSYS_MIN() 时,充电器应将系统输出电压调节到固定的 VSYS_MIN(),并且电池充电电流由 BATFET 栅极电压进行调节,从而实现以 LDO 模式运行。通过这样以 LDO 模式运行,即可实现充电器预充电和涓流充电状态。在预充电和涓流充电状态下,均有相应的电流限制,请参阅电池充电曲线。在 LDO 模式下,更大的 VSYS_MIN() 减去 VBAT 差值和更大的充电电流会在 BATFET 上产生更多的散热,应适当地限制该散热以确保安全运行。因此,除了上面提到的预充电和涓流充电电流钳位,我们还有额外的两级电流钳位,以确保最大 BATFET 耗散损耗低于 2W(基于 VBAT 和 VSYS_MIN() 设置之间的关系,请参阅表 7-9)。考虑 IPRECHG() 用户寄存器上钳位、电池短路涓流充电电流钳位 (128mA) 和以下两级 BATFET 电流钳位,较低的电流钳位将主导最终的最大充电电流限制。

表 7-9 LDO 模式下的 BATFET 充电电流钳位
名称 VBAT 与 VSYS_MIN() 间的关系 最大充电电流钳位
IBATFET_CLAMP1 1V<VSYS_MIN()-VBAT<4V

512mA(内部钳位对 IPRECHG() 寄存器无影响)

IBATFET_CLAMP2 4V<VSYS_MIN()-VBAT

128mA(内部钳位对 IPRECHG() 寄存器无影响)

当禁用充电器 LDO 模式 (EN_LDO=0b) 时,BATFET 将处于完全导通或完全关断状态。禁用充电时,系统电压调节到 5V (VBAT<5V) 或 VBAT+160mV (VBAT>5V);不过,启用充电时,VSYS 将调节至接近 VBAT 以实现目标充电电流,VSYS_MIN 调节无效。