ZHCSLU2D December   2021  – October 2025 LM63440-Q1 , LM63460-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
    1. 5.1 可润湿侧翼
    2. 5.2 针对间隙和 FMEA 进行引脚排列设计
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 计时特点
    7. 6.7 系统特性
    8. 6.8 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  输入电压范围(VIN1、VIN2)
      2. 7.3.2  输出电压设定值 (FB)
      3. 7.3.3  精密使能和输入电压 UVLO (EN/SYNC)
      4. 7.3.4  频率同步 (EN/SYNC)
      5. 7.3.5  时钟锁定
      6. 7.3.6  可调开关频率 (RT)
      7. 7.3.7  电源正常监视器 (PGOOD)
      8. 7.3.8  辅助电源稳压器(VCC、BIAS)
      9. 7.3.9  自举电压和 UVLO (CBOOT)
      10. 7.3.10 展频
      11. 7.3.11 软启动和从压降中恢复
      12. 7.3.12 过流和短路保护
      13. 7.3.13 热关断
      14. 7.3.14 输入电源电流
    4. 7.4 器件功能模式
      1. 7.4.1 关断模式
      2. 7.4.2 待机模式
      3. 7.4.3 工作模式
        1. 7.4.3.1 CCM 模式
        2. 7.4.3.2 AUTO 模式 – 轻负载运行
          1. 7.4.3.2.1 二极管仿真
          2. 7.4.3.2.2 频率折返
        3. 7.4.3.3 FPWM 模式 – 轻负载运行
        4. 7.4.3.4 最短导通时间(高输入电压)运行
        5. 7.4.3.5 压降
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计 1 — 2.1MHz 时的汽车同步 6A 降压稳压器
        1. 8.2.1.1 设计要求
      2. 8.2.2 设计 2 — 2.1MHz 时的汽车同步 4A 降压稳压器
        1. 8.2.2.1 设计要求
        2. 8.2.2.2 详细设计过程
          1. 8.2.2.2.1  使用 WEBENCH® 工具创建定制设计方案
          2. 8.2.2.2.2  设置输出电压
          3. 8.2.2.2.3  选择开关频率
          4. 8.2.2.2.4  电感器选型
          5. 8.2.2.2.5  输出电容器选型
          6. 8.2.2.2.6  输入电容器选型
          7. 8.2.2.2.7  自举电容器
          8. 8.2.2.2.8  VCC 电容器
          9. 8.2.2.2.9  辅助电源连接
          10. 8.2.2.2.10 前馈网络
          11. 8.2.2.2.11 输入电压 UVLO
        3. 8.2.2.3 应用曲线
      3. 8.2.3 设计 3 — 400kHz 时的汽车同步 6A 降压稳压器
        1. 8.2.3.1 设计要求
        2. 8.2.3.2 详细设计过程
        3. 8.2.3.3 应用曲线
    3. 8.3 电源相关建议
    4. 8.4 布局
      1. 8.4.1 布局指南
        1. 8.4.1.1 热设计和布局
      2. 8.4.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 第三方产品免责声明
      2. 9.1.2 开发支持
        1. 9.1.2.1 使用 WEBENCH® 工具创建定制设计方案
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

过流和短路保护

该转换器通过对高侧和低侧 MOSFET 实施逐周期电流限制,在过流情况下提供保护。高侧 MOSFET 过流保护是通过峰值电流模式控制的特性来实现的。当高侧开关在较短的消隐时间后导通时,将检测到高侧开关电流。在每个开关周期,会将该开关电流与固定电流设定点或和电压调节环路输出减去斜率补偿后的较小值进行比较。由于电压环路输出具有最大值并且斜率补偿随占空比增加,因此当占空比高于 35%,高侧电流限值会随着占空比的增加而减小。请参阅 图 7-8

LM63440-Q1 LM63460-Q1 LM63460-Q1 的高侧开关最大电流与占空比的关系图 7-8 LM63460-Q1 的高侧开关最大电流与占空比的关系

当低侧开关接通时,也会检测和监控开关电流。与高侧器件一样,低侧开关会根据电压控制环路和低侧电流限制关闭。如果低侧开关电流在开关周期结束时高于 IL-LS,则开关周期会延长,直到低侧电流降至限值以下。一旦低侧电流降至限值以下,低侧开关关断,只要自高侧器件上次导通后至少经过一个时钟周期,高侧开关就会再次导通。

LM63440-Q1 LM63460-Q1 电流限值波形图 7-9 电流限值波形

因为电流波形假定值介于 IL-HS 和 IL-LS 之间,因此最大输出电流非常接近这两个值的平均值。使用了迟滞控制,并且当输出电压接近零时,电流不会增加。

如果存在极端过载情况,该转换器会采用断续过流保护,并且在连续 128 个开关周期内满足以下条件:

  • 输出电压低于输出电压设定点的约 0.4 倍。
  • 自软启动开始以来,经过了大于 tSS2 的时间;请参阅 软启动和从压降中恢复
  • 该转换器不处于压降状态(压降状态定义为最短关断时间受控占空比)。

在断续模式下,器件会关断,并在 tW 后尝试软启动。断续模式有助于在严重过流和短路情况下降低器件功耗。请参阅 图 7-10。一旦消除过载,器件就会像在软启动中一样恢复;请参阅图 7-11

LM63440-Q1 LM63460-Q1 断续期间的电感器电流突发图 7-10 断续期间的电感器电流突发
LM63440-Q1 LM63460-Q1 短路恢复图 7-11 短路恢复