SFFS624 March   2024 MSPM0G3105 , MSPM0G3106 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3506 , MSPM0G3507 , MSPM0G3507-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2 MSPM0G Hardware Component Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  5. 4 MSPM0G Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1  ADC
    2. 5.2  Comparator
    3. 5.3  DAC
    4. 5.4  OPA
    5. 5.5  CPU
    6. 5.6  RAM
    7. 5.7  FLASH
    8. 5.8  GPIO
    9. 5.9  DMA
    10. 5.10 SPI
    11. 5.11 I2C
    12. 5.12 UART
    13. 5.13 Timers (TIMx)
    14. 5.14 Power Management Unit (PMU)
    15. 5.15 Clock Module (CKM)
    16. 5.16 CAN-FD
  7. 6 MSPM0G Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1  ADC1,COMP1,DAC1,DMA1,GPIO2,TIM2,I2C2,IOMUX1,OA1,SPI2,UART2,SYSCTL5,MCAN2: Periodic read of static configuration registers
      2. 6.3.2  ADC2: Software test of function
      3. 6.3.3  ADC3: ADC trigger overflow check
      4. 6.3.4  ADC4: Window comparator
      5. 6.3.5  OA2: Test of OA using internal DAC as a driver
      6. 6.3.6  COMP2: Software test of Comparator using internal DAC
      7. 6.3.7  WDT: Windowed watch dog timer
      8. 6.3.8  CPU1: CPU test using software test library
      9. 6.3.9  CPU2: Software test of CPU data busses
      10. 6.3.10 SYSMEM4: Parity protection on SRAM
      11. 6.3.11 FLASH1: Flash Single Error Correction, Double Error Detection mechanism
      12. 6.3.12 DAC2: DAC test using internal ADC as DAC output checker
      13. 6.3.13 DAC3: DAC FIFO underrun interrupt
      14. 6.3.14 DMA2: Software test of DMA function
      15. 6.3.15 GPIO1: GPIO test using pin IO loopback
      16. 6.3.16 TIM1: Test for PWM generation
      17. 6.3.17 I2C1: Software test of I2C function using internal loopback mechanism
      18. 6.3.18 SPI1 : Software test of SPI function
      19. 6.3.19 SPI3: SPI periodic safety message exchange
      20. 6.3.20 UART1: Software test of UART function
      21. 6.3.21 SYSCTL1: MCLK monitor
      22. 6.3.22 SYSCTL2: HFCLK startup monitor
      23. 6.3.23 SYSCTL3: LFCLK monitor
      24. 6.3.24 SYSCTL4: RTC monitor
      25. 6.3.25 SYSCTL6: SYSPLL startup monitor
      26. 6.3.26 SYSCTL8: Brownout Reset (BOR) Supervisor
      27. 6.3.27 SYSCTL9: FCC counter logic to calculate clock frequencies
      28. 6.3.28 SYSCTL10: External voltage monitor
      29. 6.3.29 SYSCTL11: Boot process monitor
      30. 6.3.30 SYSCTL12: TRIM bits parity protection
      31. 6.3.31 SYSCTL14: Brownout Voltage Monitor
      32. 6.3.32 SYSCTL15: External voltage monitor
      33. 6.3.33 MCAN1: Software test of function using I/O Loopback
      34. 6.3.34 MCAN4: SRAM ECC
      35. 6.3.35 MCAN5: Software test of ECC check logic
      36. 6.3.36 MCAN6: MCAN timeout function
      37. 6.3.37 MCAN7: MCAN timestamp function
  8. 7An In-Context Look at This Safety Element out of Context
    1. 7.1 System Functional Safety Concept Examples
  9.   A Summary of Recommended Functional Safety Mechanism Usage (Optional)
  10.   B Distributed Developments
    1.     B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
    2.     B.2 Activities Performed by Texas Instruments
    3.     B.3 Information Provided

RAM

MSPM0Gxx MCUs include a low power, high performance SRAM memory with zero wait state access across the supported CPU frequency range of the device. MSPM0Gxx MCUs also provides up to 32KB of SRAM with hardware parity. SRAM memory can be used for storing volatile information such as the call stack, heap, global data, and code. The SRAM memory content is fully retained in run, sleep, stop, and standby operating modes and is lost in shutdown mode. A write protection mechanism is provided to allow the application to prevent unintended modifications to the SRAM memory. Write protection is useful when placing executable code into SRAM as it provides a level of protection against unintentional overwrites of code by either the CPU or DMA. Placing code in SRAM can improve performance of critical loops by enabling zero wait state operation and lower power consumption.

The following tests can be applied as functional safety mechanisms for this module (to provide diagnostic coverage on a specific function):