ZHCSKL1A December   2019  – May 2022 TUSS4440

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power-Up Characteristics
    6. 6.6  Transducer Drive
    7. 6.7  Receiver Characteristics
    8. 6.8  Echo Interrupt Comparator Characteristics
    9. 6.9  Digital I/O Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Excitation Power Supply (VDRV)
      2. 7.3.2 Burst Generation
        1. 7.3.2.1 Burst Generation Diagnostics
      3. 7.3.3 Transformer Transducer Drive
      4. 7.3.4 Analog Front End
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
    6. 7.6 Register Maps
      1. 7.6.1 REG_USER Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Transformer Drive Configuration Options
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Transducer Driving Voltage
          2. 8.2.1.2.2 Transducer Driving Frequency
          3. 8.2.1.2.3 Transducer Pulse Count
          4. 8.2.1.2.4 Transformer Turns Ratio
          5. 8.2.1.2.5 Transformer Saturation Current and Main Voltage Rating
        3. 8.2.1.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 接收文档更新通知
    2. 11.2 支持资源
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Transducer Driving Frequency

The strength of ultrasonic waves propagated into the air attenuate proportionally with distance. This attenuation is caused by diffusion, diffraction, and absorption loss as the ultrasonic energy transmits through the medium of air. As shown in Figure 8-3, the higher the frequency of the ultrasonic wave, the larger the attenuation rate and the shorter the distance the wave reaches.

GUID-17C690A4-70AB-44F4-A939-379BDD4774D5-low.gifFigure 8-3 Attenuation Characteristics of Sound Pressure by Distance

An ultrasonic transducer has a fixed resonant center frequency with a typical tolerance of ±2%. The lower frequency range of 30 kHz to 100 kHz is the default operating range for common long range applications for a step resolution of 1 cm and typical range of 30 cm to 5 m. The upper frequency range of 100 kHz to 1000 kHz is reserved for high-precision applications with a step resolution of 1 mm and a typical range of 5 cm to 1 m.