ZHCSJT6B may   2019  – february 2023 TPS1HB16-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 6.1 Recommended Connections for Unused Pins
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 SNS Timing Characteristics
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Protection Mechanisms
        1. 9.3.1.1 Thermal Shutdown
        2. 9.3.1.2 Current Limit
          1. 9.3.1.2.1 Current Limit Foldback
          2. 9.3.1.2.2 Programmable Current Limit
          3. 9.3.1.2.3 Undervoltage Lockout (UVLO)
          4. 9.3.1.2.4 VBB During Short-to-Ground
        3. 9.3.1.3 Voltage Transients
          1. 9.3.1.3.1 Load Dump
          2. 9.3.1.3.2 Driving Inductive Loads
        4. 9.3.1.4 Reverse Battery
        5. 9.3.1.5 Fault Event – Timing Diagrams
      2. 9.3.2 Diagnostic Mechanisms
        1. 9.3.2.1 VOUT Short-to-Battery and Open-Load
          1. 9.3.2.1.1 Detection With Switch Enabled
          2. 9.3.2.1.2 Detection With Switch Disabled
        2. 9.3.2.2 SNS Output
          1. 9.3.2.2.1 RSNS Value
            1. 9.3.2.2.1.1 High Accuracy Load Current Sense
            2. 9.3.2.2.1.2 SNS Output Filter
        3. 9.3.2.3 Fault Indication and SNS Mux
        4. 9.3.2.4 Resistor Sharing
        5. 9.3.2.5 High-Frequency, Low Duty-Cycle Current Sensing
    4. 9.4 Device Functional Modes
      1. 9.4.1 Off
      2. 9.4.2 Standby
      3. 9.4.3 Diagnostic
      4. 9.4.4 Standby Delay
      5. 9.4.5 Active
      6. 9.4.6 Fault
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Ground Protection Network
      2. 10.1.2 Interface With Microcontroller
      3. 10.1.3 I/O Protection
      4. 10.1.4 Inverse Current
      5. 10.1.5 Loss of GND
      6. 10.1.6 Automotive Standards
        1. 10.1.6.1 ISO7637-2
        2. 10.1.6.2 AEC-Q100-012 Short Circuit Reliability
      7. 10.1.7 Thermal Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Thermal Considerations
        2. 10.2.2.2 RILIM Calculation
        3. 10.2.2.3 Diagnostics
          1. 10.2.2.3.1 Selecting the RISNS Value
      3. 10.2.3 Application Curves
    3. 10.3 Typical Application
      1. 10.3.1 Design Requirements
      2. 10.3.2 Detailed Design Procedure
      3. 10.3.3 Application Curves
      4. 10.3.4 Detailed Design Procedure
      5. 10.3.5 Application Curves
    4. 10.4 Power Supply Recommendations
    5. 10.5 Layout
      1. 10.5.1 Layout Guidelines
      2. 10.5.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Application Curves

When the device receives a rising edge on the EN pulse the output will turn on. After the turn-on delay time, the device VOUT goes to the VBB supply and begins outputting the steady state resistive current.

GUID-286F7988-5B06-451F-915E-CCBC456D0894-low.pngFigure 10-4 TPS1HB16-Q1 Turn-On Waveform (ROUT = 4 Ω)

When the device turns off on a falling edge of EN, the channel IOUT will go to zero and the VOUT will drop to zero as well as shown.

GUID-3C9487FF-764A-40F9-9A21-CB959AF18869-low.pngFigure 10-5 TPS1HB16-Q1 Turn-Off Waveform (ROUT = 4 Ω)

When there is a load step, the SNS current output will follow the load current with a slight delay. The image shows the output current temporarily increase from 1 A to 5 A and then return to 1 A. In this situation, the output current is accurately modeled throughout the pulse by the voltage on the SNS pin allowing for accurate diagnostics.

GUID-2E2C241E-428F-4E6D-BE05-2E78D9F4A07A-low.pngFigure 10-6 TPS1HB16-Q1 SNS Settling Time

If the device has a no-load case due to an open load or cable, the device will register the fault even in an off-state if the DIAG_EN pin is high. Figure 10-7 shows the device behavior when an open load event is registered with EN low and DIAG_EN is raised. Systems can PWM DIAG_EN to lower system power losses while still watching for open load events and the same timing applies.

GUID-2E5DF314-AE88-494E-BC80-848F2EE1DD58-low.pngFigure 10-7 Open Load (tOL) Detection Time

If the output of the TPS1HB16-Q1 is short-circuited, the device will protect the system from failure. Depending on the device version and RILIM, the current limit set-point will vary. The waveforms below show examples of the current limit behavior when the device is enabled into a short circuit with a test setup according to AEC-Q100-012. In each case, the RILIM pin has a 5 kΩ resistor to set the current limit.

GUID-F303C2C0-7E96-4985-AD50-DA571AE6FE61-low.pngFigure 10-8 TPS1HB16-Q1 Version A Short Circuit Waveform
GUID-99EE090E-ECDB-4795-B671-D3B5E194F7F1-low.pngFigure 10-9 TPS1HB16-Q1 Version B Short Circuit Waveform