ZHCSUM8J September   2008  – August 2025 TL720M05-Q1

PRODMIX  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性(仅适用于 KVU 封装)
    6. 5.6 电气特性(仅适用于 KTT 封装)
    7. 5.7 典型特性
  7. 参数测量信息
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 欠压锁定
      2. 7.3.2 热关断
      3. 7.3.3 电流限值
    4. 7.4 器件功能模式
      1. 7.4.1 正常运行
      2. 7.4.2 压降运行
      3. 7.4.3 禁用
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 输入和输出电容器选择
        1. 8.1.1.1 旧芯片电容器选择
        2. 8.1.1.2 新芯片输出电容器
        3. 8.1.1.3 新芯片输入电容器
      2. 8.1.2 压降电压
      3. 8.1.3 反向电流
      4. 8.1.4 功率耗散 (PD)
        1. 8.1.4.1 热性能与铜面积
        2. 8.1.4.2 功率耗散与环境温度之间的关系
      5. 8.1.5 估算结温
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1 输入电容器
        2. 8.2.2.2 输出电容器
      3. 8.2.3 应用曲线
    3. 8.3 电源相关建议
    4. 8.4 布局
      1. 8.4.1 布局指南
      2. 8.4.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 评估模块
      2. 9.1.2 器件命名规则
      3. 9.1.3 开发支持
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • KVU|3
  • PWP|20
  • KTT|3
散热焊盘机械数据 (封装 | 引脚)
订购信息

功率耗散 (PD)

电路可靠性需要考虑器件功率耗散、PCB 上的电路位置以及正确的热平面尺寸。确定稳压器周围的印刷电路板 (PCB) 区域具有少量或没有其他会导致热应力增加的发热器件。

对于一阶近似,稳压器中的功率耗散取决于输入到输出电压差和负载条件。以下公式可计算功率耗散 (PD)。

方程式 2. PD=VIN-VOUT×IOUT
注:

正确选择系统电压轨,以最大限度地减少功耗,实现更高的效率。为了实现更低功率耗散,请使用正确输出调节所需的最小输入电压。

对于带有散热焊盘的器件,器件封装的主要热传导路径是通过散热焊盘到 PCB。将散热焊盘焊接到器件下方的铜焊盘区域。确定焊盘区域包含一组电镀过孔,这些过孔会将热量传导至额外的铜平面以增加散热。

最大功耗决定了该器件允许的最高环境温度 (TA)。功率耗散和结温通常与 PCB 和器件封装组合的 RθJA 和环境空气温度 (TA) 有关。RθJA 是结至环境热阻。方程式 3可计算这一关系。

方程式 3. TJ=TA+RθJA×PD

热阻 (RθJA) 在很大程度上取决于特定 PCB 设计中内置的散热能力。因此,RθJA 会根据总铜面积、铜重量和平面位置而变化。热性能信息 表中列出的结至环境热阻由 JEDEC 标准 PCB 和铜扩散面积决定。该电阻用作封装热性能的相对测量值。