SLLSFV1 March   2025 MCF8329A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Three Phase BLDC Gate Drivers
      2. 6.3.2  Gate Drive Architecture
        1. 6.3.2.1 Dead time and Cross Conduction Prevention
      3. 6.3.3  AVDD Linear Voltage Regulator
      4. 6.3.4  Low-Side Current Sense Amplifier
      5. 6.3.5  Device Interface Modes
        1. 6.3.5.1 Interface - Control and Monitoring
        2. 6.3.5.2 I2C Interface
      6. 6.3.6  Motor Control Input Options
        1. 6.3.6.1 Analog-Mode Motor Control
        2. 6.3.6.2 PWM-Mode Motor Control
        3. 6.3.6.3 Frequency-Mode Motor Control
        4. 6.3.6.4 I2C based Motor Control
        5. 6.3.6.5 Input Control Signal Profiles
          1. 6.3.6.5.1 Linear Control Profiles
          2. 6.3.6.5.2 Staircase Control Profiles
          3. 6.3.6.5.3 Forward-Reverse Profiles
        6. 6.3.6.6 Control Input Transfer Function without Profiler
      7. 6.3.7  Bootstrap Capacitor Initial Charging
      8. 6.3.8  Starting the Motor Under Different Initial Conditions
        1. 6.3.8.1 Case 1 – Motor is Stationary
        2. 6.3.8.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 6.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction
      9. 6.3.9  Motor Start Sequence (MSS)
        1. 6.3.9.1 Initial Speed Detect (ISD)
        2. 6.3.9.2 Motor Resynchronization
        3. 6.3.9.3 Reverse Drive
          1. 6.3.9.3.1 Reverse Drive Tuning
        4. 6.3.9.4 Motor Start-up
          1. 6.3.9.4.1 Align
          2. 6.3.9.4.2 Double Align
          3. 6.3.9.4.3 Initial Position Detection (IPD)
            1. 6.3.9.4.3.1 IPD Operation
            2. 6.3.9.4.3.2 IPD Release
            3. 6.3.9.4.3.3 IPD Advance Angle
          4. 6.3.9.4.4 Slow First Cycle Startup
          5. 6.3.9.4.5 Open loop
          6. 6.3.9.4.6 Transition from Open to Closed Loop
      10. 6.3.10 Closed Loop Operation
        1. 6.3.10.1 Closed loop accelerate
        2. 6.3.10.2 Speed PI Control
        3. 6.3.10.3 Current PI Control
        4. 6.3.10.4 Power Loop
        5. 6.3.10.5 Modulation Index Control
      11. 6.3.11 Maximum Torque Per Ampere (MTPA) Control
      12. 6.3.12 Flux Weakening Control
      13. 6.3.13 Motor Parameters
        1. 6.3.13.1 Motor Resistance
        2. 6.3.13.2 Motor Inductance
        3. 6.3.13.3 Motor Back-EMF constant
      14. 6.3.14 Motor Parameter Extraction Tool (MPET)
      15. 6.3.15 Anti-Voltage Surge (AVS)
      16. 6.3.16 Active Braking
      17. 6.3.17 Output PWM Switching Frequency
      18. 6.3.18 Dead Time Compensation
      19. 6.3.19 Voltage Sense Scaling
      20. 6.3.20 Motor Stop Options
        1. 6.3.20.1 Coast (Hi-Z) Mode
        2. 6.3.20.2 Recirculation Mode
        3. 6.3.20.3 Low-Side Braking
        4. 6.3.20.4 Active Spin-Down
      21. 6.3.21 FG Configuration
        1. 6.3.21.1 FG Output Frequency
        2. 6.3.21.2 FG in Open-Loop
        3. 6.3.21.3 FG During Motor Stop
        4. 6.3.21.4 FG Behavior During Fault
      22. 6.3.22 DC Bus Current Limit
      23. 6.3.23 Protections
        1. 6.3.23.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 6.3.23.2  AVDD Power on Reset (AVDD_POR)
        3. 6.3.23.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 6.3.23.4  BST Undervoltage Lockout (BST_UV)
        5. 6.3.23.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 6.3.23.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 6.3.23.7  Thermal Shutdown (OTSD)
        8. 6.3.23.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 6.3.23.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.23.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.23.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.23.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1001b to 1111b)
        9. 6.3.23.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 6.3.23.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.23.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.23.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.23.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 6.3.23.10 Motor Lock (MTR_LCK)
          1. 6.3.23.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 6.3.23.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 6.3.23.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 6.3.23.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        11. 6.3.23.11 Motor Lock Detection
          1. 6.3.23.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 6.3.23.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 6.3.23.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 6.3.23.12 MPET Faults
        13. 6.3.23.13 IPD Faults
    4. 6.4 Device Functional Modes
      1. 6.4.1 Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Standby Mode
        3. 6.4.1.3 Fault Reset (CLR_FLT)
    5. 6.5 External Interface
      1. 6.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 6.5.2 Oscillator Source
        1. 6.5.2.1 External Clock Source
    6. 6.6 EEPROM access and I2C interface
      1. 6.6.1 EEPROM Access
        1. 6.6.1.1 EEPROM Write
        2. 6.6.1.2 EEPROM Read
      2. 6.6.2 I2C Serial Interface
        1. 6.6.2.1 I2C Data Word
        2. 6.6.2.2 I2C Write Operation
        3. 6.6.2.3 I2C Read Operation
        4. 6.6.2.4 Examples of I2C Communication Protocol Packets
        5. 6.6.2.5 Internal Buffers
        6. 6.6.2.6 CRC Byte Calculation
  8. EEPROM (Non-Volatile) Register Map
    1. 7.1 Algorithm_Configuration Registers
    2. 7.2 Fault_Configuration Registers
    3. 7.3 Hardware_Configuration Registers
    4. 7.4 Internal_Algorithm_Configuration Registers
  9. RAM (Volatile) Register Map
    1. 8.1 Fault_Status Registers
    2. 8.2 Algorithm_Control Registers
    3. 8.3 System_Status Registers
    4. 8.4 Device_Control Registers
    5. 8.5 Algorithm_Variables Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3.      Gate Drive Current
      4.      Gate Resistor Selection
      5.      System Considerations in High Power Designs
      6.      Capacitor Voltage Ratings
      7.      External Power Stage Components
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
      3. 9.4.3 Thermal Considerations
        1. 9.4.3.1 Power Dissipation
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Control Input Transfer Function without Profiler

The input control signal can be motor speed, DC input power or motor voltage (motor PWM duty cycle) as configured by CLOSED_LOOP_MODE and CONST_POWER_MODE bits.

Speed Input Transfer Function

MCF8329A-Q1 Speed Input Transfer
                    FunctionFigure 6-11 Speed Input Transfer Function

Figure 6-11 shows the relationship between DUTY CMD and SPEED REF. When speed loop is enabled, DUTY CMD sets the SPEED REF in Hz. MAX_SPEED sets the SPEED REF at DUTY CMD of 100%. MIN_DUTY sets the minimum SPEED REF (MIN_DUTY x MAX_SPEED). If MAX_SPEED is set to 0, SPEED REF is clamped to zero (irrespective of DUTY CMD) and motor is in stopped state.

Power Input Transfer Function

MCF8329A-Q1 Power Input Transfer FunctionFigure 6-12 Power Input Transfer Function

Figure 6-12 shows the relationship between DUTY CMD and POWER REF. When power loop is enabled, DUTY CMD sets the POWER REF in Watt. MAX_POWER sets the POWER REF at DUTY CMD of 100%. MIN_DUTY sets the minimum POWER REF (MIN_DUTY x MAX_POWER). If MAX_POWER is set to 0, POWER REF is clamped to zero (irrespective of DUTY CMD) and motor is in stopped state.

Current Input Transfer Function

MCF8329A-Q1 Current Input Transfer FunctionFigure 6-13 Current Input Transfer Function

Figure 6-13 shows the relationship between DUTY_CMD and CURRENT_REF. When the current loop is enabled, DUTY_CMD sets the q-axis CURRENT_REF (iq_ref)in Ampere. MAX_CURRENT is the same as ILIMIT and sets the CURRENT_REF at DUTY CMD of 100%. MIN_DUTY sets the minimum CURRENT_REF (MIN_DUTY x MAX_CURRENT).

Note:
  1. In MCF8329A-Q1, MIN_DUTY is set as 1%. Any duty command (DUTY_CMD) or reference (REF_X from input profiles) value set to < 1% will result in target reference (SPEED REF or POWER REF or CURRENT REF or MODULATION INDEX REF) being clamped to zero and motor to be in stopped state.

Modulation Index Input Transfer Function

In modulation index control mode, the voltage applied to the motor (direct axis component of modulation index Vd and quadrature axis component of modulation index Vq) is proportional to the DUTY_CMD (from MIN_DUTY to 100% PWM duty applied to motor). For DUTY CMD less than MIN_DUTY, the applied voltage to the motor is clamped to zero by making the duty cycle to zero.