SLLSFV1 March   2025 MCF8329A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Three Phase BLDC Gate Drivers
      2. 6.3.2  Gate Drive Architecture
        1. 6.3.2.1 Dead time and Cross Conduction Prevention
      3. 6.3.3  AVDD Linear Voltage Regulator
      4. 6.3.4  Low-Side Current Sense Amplifier
      5. 6.3.5  Device Interface Modes
        1. 6.3.5.1 Interface - Control and Monitoring
        2. 6.3.5.2 I2C Interface
      6. 6.3.6  Motor Control Input Options
        1. 6.3.6.1 Analog-Mode Motor Control
        2. 6.3.6.2 PWM-Mode Motor Control
        3. 6.3.6.3 Frequency-Mode Motor Control
        4. 6.3.6.4 I2C based Motor Control
        5. 6.3.6.5 Input Control Signal Profiles
          1. 6.3.6.5.1 Linear Control Profiles
          2. 6.3.6.5.2 Staircase Control Profiles
          3. 6.3.6.5.3 Forward-Reverse Profiles
        6. 6.3.6.6 Control Input Transfer Function without Profiler
      7. 6.3.7  Bootstrap Capacitor Initial Charging
      8. 6.3.8  Starting the Motor Under Different Initial Conditions
        1. 6.3.8.1 Case 1 – Motor is Stationary
        2. 6.3.8.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 6.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction
      9. 6.3.9  Motor Start Sequence (MSS)
        1. 6.3.9.1 Initial Speed Detect (ISD)
        2. 6.3.9.2 Motor Resynchronization
        3. 6.3.9.3 Reverse Drive
          1. 6.3.9.3.1 Reverse Drive Tuning
        4. 6.3.9.4 Motor Start-up
          1. 6.3.9.4.1 Align
          2. 6.3.9.4.2 Double Align
          3. 6.3.9.4.3 Initial Position Detection (IPD)
            1. 6.3.9.4.3.1 IPD Operation
            2. 6.3.9.4.3.2 IPD Release
            3. 6.3.9.4.3.3 IPD Advance Angle
          4. 6.3.9.4.4 Slow First Cycle Startup
          5. 6.3.9.4.5 Open loop
          6. 6.3.9.4.6 Transition from Open to Closed Loop
      10. 6.3.10 Closed Loop Operation
        1. 6.3.10.1 Closed loop accelerate
        2. 6.3.10.2 Speed PI Control
        3. 6.3.10.3 Current PI Control
        4. 6.3.10.4 Power Loop
        5. 6.3.10.5 Modulation Index Control
      11. 6.3.11 Maximum Torque Per Ampere (MTPA) Control
      12. 6.3.12 Flux Weakening Control
      13. 6.3.13 Motor Parameters
        1. 6.3.13.1 Motor Resistance
        2. 6.3.13.2 Motor Inductance
        3. 6.3.13.3 Motor Back-EMF constant
      14. 6.3.14 Motor Parameter Extraction Tool (MPET)
      15. 6.3.15 Anti-Voltage Surge (AVS)
      16. 6.3.16 Active Braking
      17. 6.3.17 Output PWM Switching Frequency
      18. 6.3.18 Dead Time Compensation
      19. 6.3.19 Voltage Sense Scaling
      20. 6.3.20 Motor Stop Options
        1. 6.3.20.1 Coast (Hi-Z) Mode
        2. 6.3.20.2 Recirculation Mode
        3. 6.3.20.3 Low-Side Braking
        4. 6.3.20.4 Active Spin-Down
      21. 6.3.21 FG Configuration
        1. 6.3.21.1 FG Output Frequency
        2. 6.3.21.2 FG in Open-Loop
        3. 6.3.21.3 FG During Motor Stop
        4. 6.3.21.4 FG Behavior During Fault
      22. 6.3.22 DC Bus Current Limit
      23. 6.3.23 Protections
        1. 6.3.23.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 6.3.23.2  AVDD Power on Reset (AVDD_POR)
        3. 6.3.23.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 6.3.23.4  BST Undervoltage Lockout (BST_UV)
        5. 6.3.23.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 6.3.23.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 6.3.23.7  Thermal Shutdown (OTSD)
        8. 6.3.23.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 6.3.23.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.23.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.23.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.23.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1001b to 1111b)
        9. 6.3.23.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 6.3.23.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.23.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.23.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.23.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 6.3.23.10 Motor Lock (MTR_LCK)
          1. 6.3.23.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 6.3.23.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 6.3.23.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 6.3.23.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        11. 6.3.23.11 Motor Lock Detection
          1. 6.3.23.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 6.3.23.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 6.3.23.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 6.3.23.12 MPET Faults
        13. 6.3.23.13 IPD Faults
    4. 6.4 Device Functional Modes
      1. 6.4.1 Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Standby Mode
        3. 6.4.1.3 Fault Reset (CLR_FLT)
    5. 6.5 External Interface
      1. 6.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 6.5.2 Oscillator Source
        1. 6.5.2.1 External Clock Source
    6. 6.6 EEPROM access and I2C interface
      1. 6.6.1 EEPROM Access
        1. 6.6.1.1 EEPROM Write
        2. 6.6.1.2 EEPROM Read
      2. 6.6.2 I2C Serial Interface
        1. 6.6.2.1 I2C Data Word
        2. 6.6.2.2 I2C Write Operation
        3. 6.6.2.3 I2C Read Operation
        4. 6.6.2.4 Examples of I2C Communication Protocol Packets
        5. 6.6.2.5 Internal Buffers
        6. 6.6.2.6 CRC Byte Calculation
  8. EEPROM (Non-Volatile) Register Map
    1. 7.1 Algorithm_Configuration Registers
    2. 7.2 Fault_Configuration Registers
    3. 7.3 Hardware_Configuration Registers
    4. 7.4 Internal_Algorithm_Configuration Registers
  9. RAM (Volatile) Register Map
    1. 8.1 Fault_Status Registers
    2. 8.2 Algorithm_Control Registers
    3. 8.3 System_Status Registers
    4. 8.4 Device_Control Registers
    5. 8.5 Algorithm_Variables Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3.      Gate Drive Current
      4.      Gate Resistor Selection
      5.      System Considerations in High Power Designs
      6.      Capacitor Voltage Ratings
      7.      External Power Stage Components
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
      3. 9.4.3 Thermal Considerations
        1. 9.4.3.1 Power Dissipation
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Maximum Torque Per Ampere (MTPA) Control

PMSM or BLDC motors with magnetic saliency produces a reluctance torque from the difference between the direct-d axis inductance and the quadrature q-axis inductance. The maximum efficiency of the IPM motors can be achieved by proper selection of the current vector ratio between magnetic torque current and reluctance torque current in the total current. MCF8329A-Q1 provides the maximum torque per ampere control and in that, for a given bus current, it is possible to obtain the best torque performance by setting the d axis current reference as a function of the q axis current reference as per the equation below.

Equation 10. id_MTPA=ψm2Lq-Ld1-1+4Lq-Ld2iq2

Ld and Lq are inductance of the d and q axis respectively. iq is the Q-axis current and ψm is the BEMF constant. In case of motors without saliency in the rotor, the inductances of d and q axis are the same and hence the point of maximum torque is always the one where d-axis current reference is 0. For motors with saliency, the d-axis reference can be set as a function of the q-axis reference as derived in the equation above so as to generate the maximum torque for any current drawn from the DC bus.