SLLSFV1 March   2025 MCF8329A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Three Phase BLDC Gate Drivers
      2. 6.3.2  Gate Drive Architecture
        1. 6.3.2.1 Dead time and Cross Conduction Prevention
      3. 6.3.3  AVDD Linear Voltage Regulator
      4. 6.3.4  Low-Side Current Sense Amplifier
      5. 6.3.5  Device Interface Modes
        1. 6.3.5.1 Interface - Control and Monitoring
        2. 6.3.5.2 I2C Interface
      6. 6.3.6  Motor Control Input Options
        1. 6.3.6.1 Analog-Mode Motor Control
        2. 6.3.6.2 PWM-Mode Motor Control
        3. 6.3.6.3 Frequency-Mode Motor Control
        4. 6.3.6.4 I2C based Motor Control
        5. 6.3.6.5 Input Control Signal Profiles
          1. 6.3.6.5.1 Linear Control Profiles
          2. 6.3.6.5.2 Staircase Control Profiles
          3. 6.3.6.5.3 Forward-Reverse Profiles
        6. 6.3.6.6 Control Input Transfer Function without Profiler
      7. 6.3.7  Bootstrap Capacitor Initial Charging
      8. 6.3.8  Starting the Motor Under Different Initial Conditions
        1. 6.3.8.1 Case 1 – Motor is Stationary
        2. 6.3.8.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 6.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction
      9. 6.3.9  Motor Start Sequence (MSS)
        1. 6.3.9.1 Initial Speed Detect (ISD)
        2. 6.3.9.2 Motor Resynchronization
        3. 6.3.9.3 Reverse Drive
          1. 6.3.9.3.1 Reverse Drive Tuning
        4. 6.3.9.4 Motor Start-up
          1. 6.3.9.4.1 Align
          2. 6.3.9.4.2 Double Align
          3. 6.3.9.4.3 Initial Position Detection (IPD)
            1. 6.3.9.4.3.1 IPD Operation
            2. 6.3.9.4.3.2 IPD Release
            3. 6.3.9.4.3.3 IPD Advance Angle
          4. 6.3.9.4.4 Slow First Cycle Startup
          5. 6.3.9.4.5 Open loop
          6. 6.3.9.4.6 Transition from Open to Closed Loop
      10. 6.3.10 Closed Loop Operation
        1. 6.3.10.1 Closed loop accelerate
        2. 6.3.10.2 Speed PI Control
        3. 6.3.10.3 Current PI Control
        4. 6.3.10.4 Power Loop
        5. 6.3.10.5 Modulation Index Control
      11. 6.3.11 Maximum Torque Per Ampere (MTPA) Control
      12. 6.3.12 Flux Weakening Control
      13. 6.3.13 Motor Parameters
        1. 6.3.13.1 Motor Resistance
        2. 6.3.13.2 Motor Inductance
        3. 6.3.13.3 Motor Back-EMF constant
      14. 6.3.14 Motor Parameter Extraction Tool (MPET)
      15. 6.3.15 Anti-Voltage Surge (AVS)
      16. 6.3.16 Active Braking
      17. 6.3.17 Output PWM Switching Frequency
      18. 6.3.18 Dead Time Compensation
      19. 6.3.19 Voltage Sense Scaling
      20. 6.3.20 Motor Stop Options
        1. 6.3.20.1 Coast (Hi-Z) Mode
        2. 6.3.20.2 Recirculation Mode
        3. 6.3.20.3 Low-Side Braking
        4. 6.3.20.4 Active Spin-Down
      21. 6.3.21 FG Configuration
        1. 6.3.21.1 FG Output Frequency
        2. 6.3.21.2 FG in Open-Loop
        3. 6.3.21.3 FG During Motor Stop
        4. 6.3.21.4 FG Behavior During Fault
      22. 6.3.22 DC Bus Current Limit
      23. 6.3.23 Protections
        1. 6.3.23.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 6.3.23.2  AVDD Power on Reset (AVDD_POR)
        3. 6.3.23.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 6.3.23.4  BST Undervoltage Lockout (BST_UV)
        5. 6.3.23.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 6.3.23.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 6.3.23.7  Thermal Shutdown (OTSD)
        8. 6.3.23.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 6.3.23.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.23.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.23.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.23.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1001b to 1111b)
        9. 6.3.23.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 6.3.23.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.23.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.23.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.23.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 6.3.23.10 Motor Lock (MTR_LCK)
          1. 6.3.23.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 6.3.23.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 6.3.23.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 6.3.23.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        11. 6.3.23.11 Motor Lock Detection
          1. 6.3.23.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 6.3.23.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 6.3.23.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 6.3.23.12 MPET Faults
        13. 6.3.23.13 IPD Faults
    4. 6.4 Device Functional Modes
      1. 6.4.1 Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Standby Mode
        3. 6.4.1.3 Fault Reset (CLR_FLT)
    5. 6.5 External Interface
      1. 6.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 6.5.2 Oscillator Source
        1. 6.5.2.1 External Clock Source
    6. 6.6 EEPROM access and I2C interface
      1. 6.6.1 EEPROM Access
        1. 6.6.1.1 EEPROM Write
        2. 6.6.1.2 EEPROM Read
      2. 6.6.2 I2C Serial Interface
        1. 6.6.2.1 I2C Data Word
        2. 6.6.2.2 I2C Write Operation
        3. 6.6.2.3 I2C Read Operation
        4. 6.6.2.4 Examples of I2C Communication Protocol Packets
        5. 6.6.2.5 Internal Buffers
        6. 6.6.2.6 CRC Byte Calculation
  8. EEPROM (Non-Volatile) Register Map
    1. 7.1 Algorithm_Configuration Registers
    2. 7.2 Fault_Configuration Registers
    3. 7.3 Hardware_Configuration Registers
    4. 7.4 Internal_Algorithm_Configuration Registers
  9. RAM (Volatile) Register Map
    1. 8.1 Fault_Status Registers
    2. 8.2 Algorithm_Control Registers
    3. 8.3 System_Status Registers
    4. 8.4 Device_Control Registers
    5. 8.5 Algorithm_Variables Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3.      Gate Drive Current
      4.      Gate Resistor Selection
      5.      System Considerations in High Power Designs
      6.      Capacitor Voltage Ratings
      7.      External Power Stage Components
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
      3. 9.4.3 Thermal Considerations
        1. 9.4.3.1 Power Dissipation
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C Write Operation

MCF8329A-Q1 write operation over I2C involves the following sequence.

  1. I2C start condition.
  2. The sequence starts with I2C target start byte, made up of 7-bit target ID (0x01) to identify the MCF8329A-Q1 along with the R/W bit set to 0.
  3. The start byte is followed by 24-bit control word. Bit 23 in the control word has to be 0 as it is a write operation.
  4. The 24-bit control word is then followed by the data bytes. The length of the data byte depends on the DLEN field.
    1. While sending data bytes, the LSB byte is sent first. Refer below examples for more details.
    2. 16-bit/32-bit write – The data sent is written to the address mentioned in Control Word.
    3. 64-bit Write – 64-bit is treated as two 32-bit writes. The address mentioned in Control word is taken as Addr 0. Addr 1 is calculating internally by MCF8329A-Q1 by incrementing Addr 0 by 2. A total of 8 data bytes are sent. The first 4 bytes (sent in LSB first way) are written to Addr 0 and the next 4 bytes are written to Addr 1.
  5. If CRC is enabled, the packet ends with a CRC byte. CRC is calculated for the entire packet (Target ID + W bit, Control Word, Data Bytes).
  6. I2C stop condition.

MCF8329A-Q1 I2C Write Operation SequenceFigure 6-50 I2C Write Operation Sequence